Browse > Article
http://dx.doi.org/10.12989/sss.2021.27.4.719

Influence of porosity on thermal buckling behavior of functionally graded beams  

Bellifa, Hichem (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Selim, Mahmoud M. (Department of Mathematics, Al-Aflaj College of Science and Humanities, Prince Sattam bin Abdulaziz University)
Chikh, Abdelbaki (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes)
Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Tounsi, Abdeldjebbar (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Benrahou, Kouider Halim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Al-Zahrani, Mesfer Mohammad (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Publication Information
Smart Structures and Systems / v.27, no.4, 2021 , pp. 719-728 More about this Journal
Abstract
The interest of this work is the analysis of the effect of porosity on the nonlinear thermal stability response of power law functionally graded beam with various boundary conditions. The modelling was done according to the Euler-Bernoulli beam model where the distribution of material properties is imitated polynomial function. The thermal loads are assumed to be not only uniform but linear as well non-linear and the temperature rises through the thickness direction. The effects of the porosity parameter, slenderness ratio and power law index on the thermal buckling of P-FG beam are discussed.
Keywords
functionally graded material; thermal buckling; Euler beam theory; porosity parameter;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ebrahimi, F. and Barati, M.R. (2016), "Thermal buckling analysis of size-dependent FG nanobeams based on the third-order shear deformation beam theory", Acta Mechanica Solida Sinica., 29(5), 547-554. https://doi.org/10.1016/s0894-9166(16)30272-5   DOI
2 Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., Int. J., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837   DOI
3 Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Thermal Stress., 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980   DOI
4 Fallah, A. and Aghdam, M.M. (2012), "Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation", Compos. Part B: Eng., 43(3), 1523-1530. https://doi.org/10.1016/j.compositesb.2011.08.041   DOI
5 Farokhian, A. and Salmani-Tehrani, M. (2020), "Surface and small scale effects on the dynamic buckling of carbon nanotubes with smart layers assuming structural damping", Steel Compos. Struct., Int. J., 37(2), 229-251. https://doi.org/10.12989/scs.2020.37.2.229   DOI
6 Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, Int. J., 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053   DOI
7 Ton-That, H.L. (2020), "Finite Element Analysis of Functionally Graded Skew Plates in Thermal Environment based on the New Third-order Shear Deformation Theory", J. Appl. Computat. Mech., 6(4), 1044-1057. https://doi.org/10.22055/jacm.2019.31508.1881   DOI
8 Turan, M., Adiyaman, G., Kahya, V. and Birinci, A. (2016), "Axisymmetric analysis of a functionally graded layer resting on elastic substrate", Struct. Eng. Mech., Int. J., 58(3), 423-442. https://doi.org/10.12989/sem.2016.58.3.423   DOI
9 Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044   DOI
10 Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends GM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002   DOI
11 Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90(2), 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005   DOI
12 Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., Int. J., 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283   DOI
13 Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., Int. J., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065   DOI
14 Rahmani, M., Mohammadi, Y., Kakavand, F. and Raeisifard, H. (2020), "Vibration analysis of different types of porous FG conical sandwich shells in various thermal surroundings", J. Appl. Computat. Mech., 6(3), 416-432. https://doi.org/10.22055/jacm.2019.29442.1598   DOI
15 Hadji, L. (2020a), "Vibration analysis of FGM beam: Effect of the micromechanical models", Coupl. Syst. Mech., Int. J., 9(3), 265-280. https://doi.org/10.12989/csm.2020.9.3.265   DOI
16 Feldman, E. and Aboudi, J. (1997), "Buckling analysis of functionally graded plates subjected to uniaxial loading", Compos. Struct., 38(1-4), 29-36. https://doi.org/10.1016/s0263-8223(97)00038-x   DOI
17 Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011   DOI
18 Daraei, B., Shojaee, S. and Hamzehei-Javaran, S. (2020), "Free vibration analysis of axially moving laminated beams with axial tension based on 1D refined theories using Carrera unified formulation", Steel Compos. Struct., Int. J., 37(1), 37-49. https://doi.org/10.12989/scs.2020.37.1.037   DOI
19 Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.A. (2014), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Math. Comput., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072   DOI
20 Hadji, L. (2020b), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., Int. J., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253   DOI
21 Hadji, L. and Avcar, M. (2021), "Free Vibration Analysis of FG Porous Sandwich Plates under Various Boundary Conditions", J. Appl. Comput. Mech., 7(2), 505-519. https://doi.org/10.22055/JACM.2020.35328.2628   DOI
22 Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., Int. J., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231   DOI
23 Jabbari, M., Mojahedin, A., Khorshidvand, A.R. and Eslami, M.R. (2013), "Buckling analysis of a functionally graded thin circular plate made of saturated porous materials", J. Eng. Mech., 140(2), 287-295. https://doi.org/10.1061/(asce)em.1943-7889.0000663   DOI
24 Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates", AIAA J., 40(1), 162-169. https://doi.org/10.2514/2.1626   DOI
25 Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., Int. J., 33(6), 865-875. https://doi.org/10.12989/scs.2019.33.6.865   DOI
26 Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams Using an efficient shear deformation beam theory", Earthq. Struct., Int. J., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329   DOI
27 She, G.-L., Liu, H.-B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., Int. J., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179   DOI
28 Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013   DOI
29 Tabasi, H.M., Jam, J.E., Fard, K.M. and Beni, M.H. (2020), "Buckling and Free Vibration Analysis of Fiber Metal-laminated Plates Resting on Partial Elastic Foundation", J. Appl. Computat. Mech., 6(1), 37-51. https://doi.org/10.22055/jacm.2019.28156.1489   DOI
30 Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., Int. J., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693   DOI
31 Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., 5(4), 205-221. https://doi.org/10.12989/amr.2016.5.4.205   DOI
32 Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., Int. J., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037   DOI
33 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019), "Influence of homogenization schemes on vibration of functionally graded curved microbeams", Compos. Struct., 216, 67-79. https://doi.org/10.1016/j.compstruct.2019.02.089   DOI
34 Kiani, Y. and Eslami, M.R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6(3), 229-238. https://doi.org/10.1007/s10999-010-9132-4   DOI
35 Karami, B., Shahsavari, D. and Janghorban, M. (2018), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143   DOI
36 Karami, B., Shahsavari, D., Ordookhani, A., Gheisari, P., Li, L. and Eyvazian, A. (2020), "Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions", Steel Compos. Struct., Int. J., 36(6), 689-702. https://doi.org/10.12989/scs.2020.36.6.689   DOI
37 Khadimallah, M.A. and Hussain, M. (2020), "Effect of power law index for vibration of armchair and zigzag single walled carbon nanotubes", Steel Compos. Struct., Int. J., 37(5), 621-632. https://doi.org/10.12989/scs.2020.37.5.621   DOI
38 Levyakov, S. (2015), "Thermal elastica of shear-deformable beam fabricated of functionally graded material", Acta Mechanica, 226(3), 723-733. https://doi.org/10.1007/s00707-014-1218-x   DOI
39 Cao, Y., Musharavati, F., Baharom, S., Talebizadehsardari, P., Sebaey, T.A., Eyvazian, A. and Zain, A.M. (2020), "Vibration response of FG-CNT-reinforced plates covered by magnetic layer utilizing numerical solution", Steel Compos. Struct., Int. J., 37(2), 253-258. https://doi.org/10.12989/scs.2020.37.2.253   DOI
40 Celebi, K., Yarimpabuc, D. and Keles, I. (2016), "A unified method for stresses in FGM sphere with exponentially-varying properties", Struct. Eng. Mech., Int. J., 57(5), 823-835. https://doi.org/10.12989/sem.2016.57.5.823   DOI
41 Ebrahimi, F., Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y   DOI
42 Jabbari, M., Hashemitaheri, M., Mojahedin, A. and Eslami, M.R. (2014), "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials", J. Therm. Stress., 37(2), 202-220. https://doi.org/10.1080/01495739.2013.839768   DOI
43 Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., Int. J., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361   DOI
44 Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135   DOI
45 Levyakov, S.V. (2013), "Elastica solution for thermal bending of a functionally graded beam", Acta Mechanica, 224(8), 1731- 1740. https://doi.org/10.1007/s00707-013-0834-1   DOI
46 Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., Int. J., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421   DOI
47 Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020b), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., Int. J., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147   DOI
48 Abrate, S. (2008), "Functionally graded plates behave like homogeneous plates", Compos. Part B, 39(1), 151-158. https://doi.org/10.1016/j.compositesb.2007.02.026   DOI
49 Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B-Eng., 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035   DOI
50 Arefi, M. (2015a), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel Compos. Struct., Int. J., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659   DOI
51 Arefi, M. (2015b), "Nonlinear electromechanical analysis of a functionally graded square plate integrated with smart layers resting on Winkler-Pasternak foundation", Smart Struct. Syst., Int. J., 16(1), 195-211. https://doi.org/10.12989/sss.2015.16.1.195   DOI
52 Chami, K, Messafer, T. and Hadji, L. (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., Int. J., 19(2), 91-101. https://doi.org/10.12989/eas.2020.19.2.091   DOI
53 Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052   DOI
54 Chikh, A. (2019), "Free Vibration Analysis of Simply Supported P-FGM Nanoplate Using a Nonlocal Four Variables Shear Deformation Plate Theory", Strojnicky casopis-J. Mech. Eng., 69(4), 9-24. https://doi.org/10.2478/scjme-2019-0039   DOI
55 Chikh, A. (2020), "Investigations in static response and free vibration of a functionally graded beam resting on elastic foundations", Frattura ed Integrita Strutturale., 14(51), 115-126. https://doi.org/10.3221/IGF-ESIS.51.09   DOI
56 Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Composite Structures, 113216. https://doi.org/10.1016/j.compstruct.2020.113216   DOI
57 Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput. https://doi.org/10.1007/s00366-020-01154-0   DOI
58 Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., Int. J., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361   DOI
59 Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., Int. J., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209   DOI
60 Darabi, A. and Vosoughi, A.R. (2016), "Hybrid inverse method for small scale parameter estimation of FG nanobeams", Steel Compos. Struct., Int. J., 20(5), 1119-1131. https://doi.org/10.12989/scs.2016.20.5.1119   DOI
61 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603   DOI
62 Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., Int. J., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097   DOI
63 Ma, L.S. and Lee, D.W. (2011), "A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading", Compos. Struct., 93(2), 831-842. https://doi.org/10.1016/j.compstruct.2010.07.011   DOI
64 Ma, L.S. and Lee, D.W. (2012), "Exact solutions for nonlinear static responses of a shear deformable FGM beam under an in-plane thermal loading", Eur. J. Mech. - A/Solids, 31(1), 13-20. https://doi.org/10.1016/j.euromechsol.2011.06.016   DOI
65 Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., Int. J., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427   DOI
66 Abdulrazzaq, M.A. Kadhim, Z.D., Faleh, N.M. and Moustafa, N.M. (2020a), "A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads", Struct. Monitor. Maint., 7(1), 27-42. https://doi.org/10.12989/smm.2020.7.1.027   DOI
67 Akgoz, B. and Civalek, O. (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mechanica, 224(9), 2185-2201. https://doi.org/10.1007/s00707-013-0883-5   DOI
68 Nebab, M., Benguediab, S., Ait Atmane, H and Bernard, F. (2020), "A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations", Geomechanics and Engineering, 22(5), 415-431. DOI: http://dx.doi.org/10.12989/gae.2020.22.5.415   DOI
69 Najafizadeh, M.M. and Heydari, H.R. (2004), "Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory", Eur. J. Mech. - A/Solids, 23(6), 1085-1100. https://doi.org/10.1016/j.euromechsol.2004.08.004   DOI
70 Najafizadeh, M.M. and Eslami, M.R. (2002), "First-Order-Theory-Based Thermo Elastic Stability of Functionally Graded Material Circular Plates", AIAA J., 40(7), 1444-1450. https://doi.org/10.2514/2.1807   DOI
71 Nebab, M., Ait Atmane, H., Bennai, R. and Tahar, B. (2019), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., Int. J., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447   DOI
72 Mohammadi, M., Saidi, A.R. and Jomehzadeh, E. (2010), "A novel analytical approach for the buckling analysis of moderately thick functionally graded rectangular plates with two simply-supported opposite edges", Mech. Eng. Sci., 224, 1831-1841. https://doi.org/10.1243/09544062jmes1804   DOI