Browse > Article
http://dx.doi.org/10.12989/sss.2021.27.4.651

Hybrid-ANFIS approaches for compressive strength prediction of cementitious mortar and paste employing magnetic water  

Kaloop, Mosbeh R. (Department of Civil and Environmental Engineering, Incheon National University)
Yousry, Omar M.M. (Structural Engineering Department, Tanta University)
Samui, Pijush (Department of Civil Engineering, National Institute of Technology Patna)
Elshikh, Mohamed M.Y. (Structural Engineering Department, Mansoura University)
Hu, Jong Wan (Department of Civil and Environmental Engineering, Incheon National University)
Publication Information
Smart Structures and Systems / v.27, no.4, 2021 , pp. 651-666 More about this Journal
Abstract
The compressive strength is an important mechanical feature of concrete that is needed in construction design. Thus, a lot of investigations were carried out to predict the compressive strength of various concretes. However, the prediction models for the compressive strength of cement mortar or paste that include magnetic water (MW) and granulated blast-furnace slag (GBFS) are still limited. The current study has developed hybrid algorithms based on adaptive neuro-fuzzy inference system (ANFIS) for modeling the compressive strength of cement mortar and paste that made with MW and GBFS as a novel mixture content. A total of 144 experimental sets of concrete-compressive strength tests for each cement mortar and paste were collected to train and validate the proposed methods, in which the cycles number of water magnetization, cement, GBFS, superplasticizer contents and curing time are set as the input data while the compressive strength value is set as the output. The developed hybrid algorithms of ANFIS optimized by firefly algorithm (FA), Improved Particle Swarm Optimization (IPSO) and biogeography-based optimization (BBO) algorithms for predicting the compressive strength of the mortar and paste. The proposed models and relevance vector machine (RVM) approach were evaluated and compared. The results showed that the ANFIS-FA outperforms other models for modeling the compressive strength of cement mortar and paste. The adjusted-coefficient of determination and root mean square error values of cement mortar models (96.20%, 92.33%, 92.36% and 89.41%) and (2.17 MPa, 3.10 MPa, 3.18 MPa and 3.06 MPa) and of cement paste models (96.92%, 80.91%, 92.19% and 88.18%) and (2.45 MPa, 5.80 MPa, 4.39 MPa and 5.20 MPa) were determined for ANFIS-FA, ANFIS-IPSO, ANFIS-BBO and RVM models, respectively, which indicate that the ANFIS-FA is a suitable model for estimating the compressive strength of cement mortar and paste that include MW. Moreover, the sensitivity of MW and GBFS is shown high for modeling the compressive strength of cement mortar.
Keywords
cement mortar and paste; magnetic water; ANFIS; hybrid model;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kockal, N. (2015), "Optimizing production parameters of ceramic tiles incorporating fly ash using response surface methodology", Ceramics Int., 41, 14529-14536. https://doi.org/10.1016/j.ceramint.2015.07.168   DOI
2 Kockal, N., Beycan, O. and Gulmez, N. (2017), "Physical and mechanical properties of silica fume and calcium hydroxide based geopolymers", Acta Physica Polonica A, 131(3), 530-533. https://doi.org/10.12693/APhysPolA.131.530   DOI
3 Jaafari, A., Panahi, M., Pham, B.T., Shahabi, H., Bui, D.T., Rezaie, F. and Lee, S. (2019), "Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility", Catena, 175, 430-445. https://doi.org/10.1016/j.catena.2018.12.033   DOI
4 Jalal, M., Grasley, Z., Gurganus, C. and Bullard, J.W. (2020), "Experimental investigation and comparative machine-learning prediction of strength behavior of optimized recycled rubber concrete", Constr. Build. Mater., 256, 119478. https://doi.org/10.1016/j.conbuildmat.2020.119478   DOI
5 Tayfur, G., Erdem, T.K. and Kirca, O. (2014), "Strength Prediction of High-Strength Concrete by Fuzzy Logic and Artificial Neural Networks", J. Mater. Civil Eng., 26(11), 04014079. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000985   DOI
6 Taylor, P., Yurdakul, E., Ceylan, H. and Bektas, F. (2012), "Effect of Paste Quality on Fresh and Hardened Properties of Ternary Mixtures", In: IOWA State University (Vol. DTFH61-06-). https://doi.org/10.1016/j.conbuildmat.2019.05.131
7 Tipping, M.E. (2000), "Sparse Bayesian learning and the relevance vector machine", J. Mach. Learn. Res., 1, 211-244. https://doi.org/10.1162/15324430152748236   DOI
8 Torres, E. and Seo, J. (2017), "State-of-the-art and practice review and recommended testing protocol: self-consolidating concrete for prestressed bridge girders", Eur. J. Environ. Civil Eng., 21(12), 1419-1440. https://doi.org/10.1080/19648189.2016.1170730   DOI
9 Liong, S.-Y., Lim, W.-H. and Paudyal, G. (2000), "River stage forecasting in Bangladish: Neural network approach", J. Comput. Civil Eng., 14(1), 1-8. https://doi.org/10.1061/(ASCE)0887-3801(2000)14:1(1)   DOI
10 Kockal, N., Beycan, O. and Gulmez, N. (2018), "Effect of binder type and content on physical and mechanical properties of geopolymers", Sadhana, 43, Article No. 49. https://doi.org/10.1007/s12046-018-0806-1   DOI
11 Mishra, M., Bhatia, A.S. and Maity, D. (2019b), "Support vector machine for determining the compressive strength of brick-mortar masonry using NDT data fusion (case study: Kharagpur, India)", SN Appl. Sci., 1(6), 564. https://doi.org/10.1007/s42452-019-0590-5   DOI
12 Moghadam, R.G., Izadbakhsh, M.A., Yosefvand, F. and Shabanlou, S. (2019), "Optimization of ANFIS network using firefly algorithm for simulating discharge coefficient of side orifices", Appl. Water Sci., 9(4), 1-12. https://doi.org/10.1007/s13201-019-0950-8   DOI
13 Murthy, A.R., Vishnuvardhan, S., Saravanan, M. and Gandhi, P. (2019), "Relevance vector based approach for the prediction of stress intensity factor for the pipe with circumferential crack under cyclic loading", Struct. Eng. Mech., Int. J., 72(1), 31-41. https://doi.org/10.12989/sem.2019.72.1.793   DOI
14 Murlidhar, B.R., Kumar, D., Armaghani, D.J., Mohamad, E.T., Roy, B. and Pham, B.T. (2020), "A novel intelligent ELM-BBO technique for predicting distance of mine blasting-induced flyrock", Natural Resour. Res., 29, 4103-4120. https://doi.org/10.1007/s11053-020-09676-6   DOI
15 Prasad Meesaraganda, L.V., Sarkar, N. and Tarafder, N. (2020), "Adaptive Neuro-Fuzzy Inference System for Predicting Strength of High-Performance Concrete", In: Advances in Intelligent Systems and Computing, Springer, Singapore pp. 119-134. https://doi.org/10.1007/978-981-15-0035-0_10
16 Madani, H., Kooshafar, M. and Emadi, M. (2020), "Compressive Strength Prediction of Nanosilica-Incorporated Cement Mixtures Using Adaptive Neuro-Fuzzy Inference System and Artificial Neural Network Models", Pract. Period. Struct. Des. Constr., 25(3), 04020021. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000499   DOI
17 Kamarian, S., Yas, M.H., Pourasghar, A. and Daghagh, M. (2014), "Application of firefly algorithm and ANFIS for optimisation of functionally graded beams", J. Experim. Theor. Artif. Intell., 26, 197-209. https://doi.org/10.1080/0952813X.2013.813978   DOI
18 Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M.M. and Petkovic, D. (2019), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intell. Manuf., 30(3), 1247-1257.   DOI
19 Ly, H.B., Pham, B.T., Dao, D.V., Le, V.M., Le, L.M. and Le, T.T. (2019), "Improvement of ANFIS model for prediction of compressive strength of manufactured sand concrete", Appl. Sci., 9(18), 3841. https://doi.org/10.3390/app9183841   DOI
20 Ma, B., Mei, J., Tan, H., Li, H., Liu, X., Jiang, W. and Zhang, T. (2019), "Effect of Nano Silica on Hydration and Microstructure Characteristics of Cement High Volume Fly Ash System Under Steam Curing", J. Wuhan Univ. Technol.-Mater. Sci. Ed., 34(3), 604-613. https://doi.org/10.1007/s11595-019-2094-y   DOI
21 Mishra, M., Bhatia, A.S. and Maity, D. (2019a), "A comparative study of regression, neural network and neuro-fuzzy inference system for determining the compressive strength of brick-mortar masonry by fusing nondestructive testing data", Eng. Comput., 37, 77-91. https://doi.org/10.1007/s00366-019-00810-4   DOI
22 Torres, E., Seo, J. and Lederle, R. (2017), "Experimental and Statistical Investigation of Self-Consolidating Concrete Mixture Constituents for Prestressed Bridge Girder Fabrication", J. Mater. Civil Eng., 29(9), 04017141. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001968   DOI
23 Mansouri, I., Ozbakkaloglu, T., Kisi, O. and Xie, T. (2016), "Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques", Mater. Struct./Materiaux et Constr., 49(10), 4319-4334. https://doi.org/10.1617/s11527-015-0790-4   DOI
24 Mansouri, I., Kisi, O., Sadeghian, P., Lee, C.H. and Hu, J.W. (2017), "Prediction of ultimate strain and strength of FRP-confined concrete cylinders using soft computing methods", Appl. Sci., 7(8), 751. https://doi.org/10.3390/app7080751   DOI
25 Mansouri, I., Gholampour, A., Kisi, O. and Ozbakkaloglu, T. (2018), "Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques", Neural Comput. Applic., 29(3), 873-888. https://doi.org/10.1007/s00521-016-2492-4   DOI
26 Rayen, S.J. and Subhashini, R. (2019), "Mammogram image retrieval using IPSO optimized anfis classifier", Int. J. Innov. Technol. Explor. Eng., 8(9 Special Issue 2), 799-804. https://doi.org/10.35940/ijitee.I1165.0789S219   DOI
27 Riahi-Madvar, H., Dehghani, M., Parmar, K.S., Nabipour, N. and Shamshirband, S. (2020), "Improvements in the explicit estimation of pollutant dispersion coefficient in rivers by subset selection of maximum dissimilarity hybridized with ANFIS-firefly algorithm (FFA)", IEEE Access, 8, 60314-60337. https://doi.org/10.1109/ACCESS.2020.2979927   DOI
28 Safiuddin, M., Raman, S., Abdus Salam, M. and Jumaat, M. (2016), "Modeling of compressive strength for self-consolidating high-strength concrete incorporating palm oil fuel ash", Materials, 9(5), 396. https://doi.org/10.3390/ma9050396   DOI
29 Selma, B., Chouraqui, S. and Abouaissa, H. (2020), "Optimal trajectory tracking control of unmanned aerial vehicle using ANFIS-IPSO system", Int. J. Inform. Technol., 12(2), 383-395. https://doi.org/10.1007/s41870-020-00436-6   DOI
30 Seo, J. and Pokhrel, J. (2019), "Surrogate modeling for self-consolidating concrete characteristics estimation for efficient prestressed bridge construction", ACI Special Publication, 333, pp. 19-39.
31 Qadir, W., Ghafor, K. and Mohammed, A. (2019), "Evaluation the effect of lime on the plastic and hardened properties of cement mortar and quantified using Vipulanandan model", Open Eng., 9(1), 468-480. https://doi.org/10.1515/eng-2019-0055   DOI
32 Rahchamani, G., Movahedifar, S.M. and Honarbakhsh, A. (2019), "A hybrid optimized learning-based compressive performance of concrete prediction using GBMO-ANFIS classifier and genetic algorithm reduction", Struct. Concrete, suco.201900155. https://doi.org/10.1002/suco.201900155   DOI
33 Aiyer, B.G., Kim, D., Karingattikkal, N., Samui, P. and Rao, P.R. (2014), "Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine", KSCE J. Civil Eng., 18(6), 1753- 1758. https://doi.org/10.1007/s12205-014-0524-0   DOI
34 Aggarwal, P., Aggarwal, Y., Siddique, R., Gupta, S. and Garg, H. (2013), "Fuzzy logic modeling of compressive strength of high-strength concrete (HSC) with supplementary cementitious material", J. Sustain. Cement-Based Mater., 2(2), 128-143. https://doi.org/10.1080/21650373.2013.801800   DOI
35 Ahmadlou, M., Karimi, M., Alizadeh, S., Shirzadi, A., Parvinnejhad, D., Shahabi, H. and Panahi, M. (2019), "Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA)", Geocarto Int., 34(11), 1252-1272. https://doi.org/10.1080/10106049.2018.1474276   DOI
36 Kaloop, M.R., El-diasty, M., Hu, J.W. and El-diasty, M. (2017), "Real-time prediction of water level change using adaptive neuro-fuzzy inference system", Geomat. Natural Hazard. Risk, 8(2), 1320-1332. https://doi.org/10.1080/19475705.2017.1327464   DOI
37 Wang, Y., Wei, H. and Li, Z. (2018), "Effect of magnetic field on the physical properties of water", Results in Phys., 8, 262-267. https://doi.org/10.1016/j.rinp.2017.12.022   DOI
38 Prasanna, P.K., Ramachandra Murthy, A. and Srinivasu, K. (2018), "Prediction of compressive strength of GGBS based concrete using RVM", Struct. Eng. Mech., Int. J., 68(6), 691-700. https://doi.org/10.12989/sem.2018.68.6.691   DOI
39 Pannu, H.S., Singh, D. and Malhi, A.K. (2018), "Improved particle swarm optimization based adaptive neuro-fuzzy inference system for benzene detection", CLEAN - Soil, Air, Water, 46(5), 1700162. https://doi.org/10.1002/clen.201700162   DOI
40 Seo, J., Torres, E. and Schaffer, W. (2017), "Self-Consolidating Concrete for Prestressed Bridge Girders", Report; South Dakota State University, USA.
41 Akkurt, S., Tayfur, G. and Can, S. (2004), "Fuzzy logic model for the prediction of cement compressive strength", Cement Concrete Res., 34(8), 1429-1433. https://doi.org/10.1016/j.cemconres.2004.01.020   DOI
42 Al-Swaidani, A.M. and Khwies, W. (2018), "Applicability of Artificial Neural Networks to Predict Mechanical and Permeability Properties of Volcanic Scoria-Based Concrete", Adv. Civil Eng., 2018, Article ID 5207962.
43 Verma, M., Thirumalaiselvi, A. and Rajasankar, J. (2017), "Kernel-based models for prediction of cement compressive strength", Neural Comput. Applic., 28(S1), 1083-1100. https://doi.org/10.1007/s00521-016-2419-0   DOI
44 Xiao, Y., Liu, J.J., Hu, Y., Wang, Y., Lai, K.K. and Wang, S. (2014), "A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting", J. Air Transport Manage., 39, 1-11. https://doi.org/10.1016/j.jairtraman.2014.03.004   DOI
45 Yang, X.S. (2010), "Firefly algorithm, stochastic test functions and design optimization", Int. J. Bio-Inspired Computat., 2(2), 78. https://doi.org/10.1504/IJBIC.2010.032124   DOI
46 Yousry, O.M.M., Abdallah, M.A., Ghazy, M.F., Taman, M.H. and Kaloop, M.R. (2020), "A Study for Improving Compressive Strength of Cementitious Mortar Utilizing Magnetic Water", Materials, 13, 1971. https://doi.org/10.3390/ma13081971   DOI
47 Seo, J., Kim, Y. and Zandyavari, S. (2015), "Response Surface Metamodel-based Performance Reliability for Reinforced Concrete Beams Strengthened with FRP sheets", ACI Special Publication, 304, pp. 1-20.
48 Armaghani, D. and Asteris, P. (2020), "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural Comput. Applic. https://doi.org/10.1007/s00521-020-05244-4   DOI
49 ASTM Standard C33 (2003), Standard Specification for Concrete Aggregates, ASTM International. https://doi.org/10.1520/C0033
50 Benmouiza, K. and Cheknane, A. (2019), "Clustered ANFIS network using fuzzy c-means, subtractive clustering, and grid partitioning for hourly solar radiation forecasting", Theor. Appl. Climatol., 137, 31-43. https://doi.org/10.1007/s00704-018-2576-4   DOI
51 Razavi Tosee, S.V. and Nikoo, M. (2019), "Neuro-fuzzy systems in determining light weight concrete strength", J. Central South Univ., 26(10), 2906-2914. https://doi.org/10.1007/s11771-019-4223-3   DOI
52 American Society for Testing and Materials International (2011), ASTM C150- Standard Specification for Portland Cement. Annual Book of ASTM Standards. https://doi.org/10.1002/jbm.b.31853
53 Du, D., Simon, D. and Ergezer, M. (2009), "Biogeography-based optimization combined with evolutionary strategy and immigration refusal", Proceedings of 2009 IEEE International Conference on Systems, Man and Cybernetics, pp. 997-1002. https://doi.org/10.1109/ICSMC.2009.5346055   DOI
54 Khorshidi, N., Ansari, M. and Bayat, M. (2014), "An investigation of water magnetization and its influence on some concrete specificities like fluidity and compressive strength", Comput. Concrete, Int. J., 13(5), 649-657. https://doi.org/10.12989/cac.2014.13.5.649   DOI
55 Termeh, S.V.R., Khosravi, K., Sartaj, M., Keesstra, S.D., Tsai, F. T.C., Dijksma, R. and Pham, B.T. (2019), "Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping", Hydrogeol. J., 27(7), 2511-2534. https://doi.org/10.1007/s10040-019-02017-9   DOI
56 Biswas, R., Samui, P. and Rai, B. (2019), "Determination of compressive strength using relevance vector machine and emotional neural network", Asian J. Civil Eng., 20(8), 1109-1118. https://doi.org/10.1007/s42107-019-00171-9   DOI
57 Simon, D. (2008), "Biogeography-based optimization", IEEE Transact. Evolution Computat., 12(6), 702-713. https://doi.org/10.1109/TEVC.2008.919004   DOI
58 Sinha, D.K., Rupali, S. and Bawa, S. (2019), "Application of Adaptive Neuro- Fuzzy Inference System for the prediction of Early Age Strength of High Performance Concrete", Proceedings of 2019 International Conference on Data Science and Engineering (ICDSE), 1-5. https://doi.org/10.1109/ICDSE47409.2019.8971798   DOI
59 Su, N., Wu, Y.-H. and Mar, C.-Y. (2000), "Effect of magnetic water on the engineering properties of concrete containing granulated blast-furnace slag", Cement Concrete Res., 30(4), 599-605. https://doi.org/10.1016/S0008-8846(00)00215-5   DOI
60 Bharath, S., Subraja, S. and Kumar, P.A. (2016), "Influence of magnetized water on concrete by replacing cement partially with copper slag", J. Chem. Pharmaceut. Sci., 9(4), 2791-2795.
61 Boukhari, Y. (2020), "Using intelligent models to predict weight loss of raw materials during cement clinker production", Revue d'Intelligence Artificielle, 34(1), 101-110. https://doi.org/10.18280/ria.340114   DOI
62 Chu, S.H. (2019), "Effect of paste volume on fresh and hardened properties of concrete", Constr. Build. Mater., 218, 284-294. https://doi.org/10.1016/j.conbuildmat.2019.05.131   DOI
63 Dhir, R.K., Brito, J. de, Mangabhai, R. and Lye, C.Q. (2017), "Copper Slag in Cement Manufacture and as Cementitious Material", In: Sustainable Construction Materials: Copper Slag, pp. 165-209. https://doi.org/10.1016/B978-0-08-100986-4.00005-5
64 Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, Int. J., 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463   DOI
65 Hesami, M., Naderi, R., Tohidfar, M. and Yoosefzadeh-Najafabadi, M. (2019), "Application of Adaptive Neuro-Fuzzy Inference System-Non-dominated Sorting Genetic Algorithm-II (ANFIS-NSGAII) for Modeling and Optimizing Somatic Embryogenesis of Chrysanthemum", Frontiers Plant Sci., 10, 869. https://doi.org/10.3389/fpls.2019.00869   DOI
66 Yuvaraj, P., Murthy, A.R., Iyer, N.R., Samui, P. and Sekar, S. (2014), "Prediction of fracture characteristics of high strength and ultra high strength concrete beams based on relevance vector machine", Int. J. Damage Mech., 23(7), 979-1004. https://doi.org/10.1177/1056789514520796   DOI
67 Eldessouki, M. and Hassan, M. (2015), "Adaptive neuro-fuzzy system for quantitative evaluation of woven fabrics' pilling resistance", Expert Syst. Applic., 42(4), 2098-2113. https://doi.org/10.1016/j.eswa.2014.10.013   DOI
68 Esfahani, A.R., Reisi, M. and Mohr, B. (2018), "Magnetized water effect on compressive strength and dosage of superplasticizers and water in self-compacting concrete", J. Mater. Civil Eng., 30(3), 1-7. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002174   DOI
69 Gilan, S., Jovein, H. and Ramezanianpour, A. (2012), "Hybrid support vector regression - Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin", Constr. Build. Mater., 34, 321-329. https://doi.org/10.1016/j.conbuildmat.2012.02.038   DOI
70 Gulbandilar, E. and Kocak, Y. (2016), "Application of expert systems in prediction of flexural strength of cement mortars", Comput. Concrete, Int. J., 18(1), 1-16. https://doi.org/10.12989/cac.2016.18.1.001   DOI