Browse > Article
http://dx.doi.org/10.12989/sss.2021.27.2.397

Closed loop cable robot for large horizontal workspaces  

Juarez-Perez, Sergio (Escuela de Ingeniería Industrial y Aeroespacial de Toledo (UCLM))
Gonzalez-Rodriguez, Antonio (Escuela de Ingeniería Industrial y Aeroespacial de Toledo (UCLM))
Rubio-Gomez, Guillermo (Escuela de Ingeniería Industrial y Aeroespacial de Toledo (UCLM))
Rodriguez-Rosa, David (Escuela de Ingeniería Industrial y Aeroespacial de Toledo (UCLM))
Ottaviano, Erika (Facolta di Ingegneria Industriale di Cassino (UNICAS))
Castillo-Garcia, Fernando J. (Escuela de Ingeniería Industrial y Aeroespacial de Toledo (UCLM))
Publication Information
Smart Structures and Systems / v.27, no.2, 2021 , pp. 397-406 More about this Journal
Abstract
Inspection and maintenance of civil structures are important issues for sustainability of existing and new infrastructures. Classical approach relies on large human activities eventually performed in unsafe conditions. This paper proposed a non-invasive solution for inspecting horizontal surface such as decks of bridges. The proposal presented here is based in cable-driven robots and allows to inspect large surfaces maintaining a very low vertical occupancy in comparison to the conventional architecture of this kind of robot. Using closed cables loop instead of a set of cables a device with low motorization power and very large workspace is designed and prototyped. As example of control an inverse dynamics technique is applied to control the end-effector where inspection tool is located, e.g., a vision system. Experimental results demonstrate that this novel device allows to inspect large horizontal surfaces, with low motorization and low vertical occupancy.
Keywords
cable robot; large workspace; flat large structures; automatic inspection;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kawamura, S., Kino, H. and Won, C. (2000), "High-speed manipulation by using parallel wiredriven robots", Robotica, 18(1), 13-21. https://doi.org/10.1017/S0263574799002477   DOI
2 Skycam (2020), Accessed: 2020-07-10. https://en.wikipedia.org/wiki/Skycam
3 Wang, Q., Kim, M.K., Sohn, H. and Cheng, J.C. (2016), "Surface flatness and distortion inspection of precast concrete elements using laser scanning technology", Smart Struct. Syst., Int. J., 18(3), 601-623. https://doi.org/10.12989/sss.2016.18.3.601   DOI
4 Yangwen, X., Qi, L., Yaqing, Z. and Bin, L. (2010), "Model aerodynamic tests with a wire-driven parallel suspension system in low-speed wind tunnel", Chinese J. Aeronaut., 23(4), 393-400. https://doi.org/10.1016/S1000-9361(09)60233-8   DOI
5 Roberts, R., Graham, T. and Lippitt, T. (1998), "On the inverse kinematics, statics, and fault tolerance of cable-suspended robots", J. Robot. Syst., 15(10), 581-597.   DOI
6 Adhikari, R.S., Bagchi, A. and Moselhi, O. (2014), "Automated condition assessment of concrete bridges with digital imaging", Smart Struct. Syst., Int. J., 13(6), 901-925. https://doi.org/10.12989/sss.2014.13.6.901   DOI
7 Carricato, M. and Merlet, J.-P. (2013), "Stability analysis of underconstrained cable-driven parallel robots", IEEE Transact. Robot., 29(1), 288-296. https://doi.org/10.1109/TRO.2012.2217795   DOI
8 Castelli, G., Ottaviano, E. and Rea, P. (2014), "A Cartesian cablesuspended robot for improving end-users mobility in an urban environment", Robot. Comput.-Integr. Manuf., 30(3), 335-343. https://doi.org/10.1016/j.rcim.2013.11.001   DOI
9 Havlik, S. (2000), "A cable-suspended robotic manipulator for large workspace operations", Comput. Aided Civil Infrastruct. Eng., 15(6), 56-68.   DOI
10 Huang, T.L., Zhou, H., Chen, H.P. and Ren, W.X. (2016), "Stochastic modelling and optimum inspection and maintenance strategy for fatigue affected steel bridge members", Smart Struct. Syst., Int. J., 18(3), 569-584. https://doi.org/10.12989/SSS.2016.18.3.569   DOI
11 Irvine, H.M. (1981), "Cable Structures", The MIT Press.
12 Jung, H.J., Lee, J.H., Yoon, S. and Kim, I.H. (2019), "Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective", Smart Struct. Syst., Int. J., 24(5), 669-681. https://doi.org/10.12989/sss.2019.24.5.669   DOI
13 Cone, L.L. (1985), "Skycam-an aerial robotic camera system", Byte, 10(10), 122.
14 Merlet, J.-P. (2016), "A generic numerical continuation scheme for solving the direct kinematics of cable-driven parallel robot with deformable cables", Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp. 4337-4343.
15 Kawamura, S., Choe, W., Tanaka, S. and Pandian, S.R. (1995), "Development of an ultrahigh speed robot falcon using wire drive system", Proceedings of IEEE International Conference on Robotics and Automattion, 1, pp. 215-220.
16 Kim, C.W., Isemoto, R., McGetrick, P., Kawatani, M. and O'Brien, E.J. (2014), "Drive-by bridge inspection from three different approaches", Smart Struct. Syst., Int. J., 13(5), 775-796. https://doi.org/10.12989/sss.2014.13.5.775   DOI
17 Kozak, K., Zhou, Q. and Wang, J. (2006), "Static analysis of cable-driven manipulators with non-negligible cable mass", IEEE Transact. Robot., 22(3), 425-433. https://doi.org/10.1109/TRO.2006.870659   DOI
18 Nan, R. (2006), "Five hundred meter aperture spherical radio telescope (FAST)", In: Science in China series G, 49(2), 129-148. https://doi.org/10.1007/s11433-006-0129-9   DOI
19 Nan, R. and Peng, B. (2000), "A chinese concept for 1km radio telescope", Acta Astronautica, 46(10-12), 667-675. https://doi.org/10.1016/S0094-5765(00)00030-8   DOI
20 Ottaviano, E., Arena, A., Gattulli, V. and Potenza, F. (2019), "Slackening effects in 2D exact positioning in cable-driven parallel manipulators", In: A. Pott, T. Bruckmann (Eds.), Mechanisms and Machine Science, 74, Springer, Cham, pp. 319-330.
21 Pott, A. (2010), "An algorithm for real-time forward kinematics of cable-driven parallel robots", In: Advances in Robot Kinematics, Springer, pp. 529-538.
22 Gonzalez-Rodriguez, A., Castillo-Garcia, F.J., Ottaviano, E., Rea, P. and Gonzalez-Rodriguez A.G. (2017), "On the effects of the design of cable-Driven robots on kinematics and dynamics models accuracy", Mechatronics, 43, 18-27. http://dx.doi.org/10.1016/j.mechatronics.2017.02.002   DOI
23 Pott, A., Mutherich, H., Kraus, W., Schmidt, V., Miermeister, P. and Verl, A. (2013), "IPAnema: a family of cable-driven parallel robots for industrial applications", In: Cable-Driven Parallel Robots (pp. 119-134), Springer, Berlin, Heidelberg.
24 Ottaviano, E. and Castelli, G. (2010), "A study on the effects of cable mass and elasticity in cable-based parallel manipulators", Proceedings of the 18th CISM-IFToMM Symposium, On Robot Design, Dynamics and Control, Springer Ed. Udine, pp. 149-156.
25 CableRobot Simulator (2020), "Cable-driven parallel robots - motion simulation in a new dimension", Accessed: 2020-07-10. http://www.ipa.fraunhofer.de/en/cable-driven_parallel_robots.html
26 Abbasnejad, G. and Carricato, M. (2015), "Direct geometricostatic problem of underconstrained cable-driven parallel robots with n cables", IEEE Transact. Robot., 31(2), 468-478. https://doi.org/10.1109/TRO.2015.2393173   DOI
27 Albus, J., Bostelman, Dagalakis, N. (1993), "The nist robocrane", J. Robot. Syst., 10(5), 709-724.   DOI
28 Bosscher, P. (2006), "Cable-suspended robotic contour crafting system", Automat. Constr., 17, 45-55. https://doi.org/10.1016/j.autcon.2007.02.011   DOI