Browse > Article
http://dx.doi.org/10.12989/sss.2021.27.1.073

A novel model of fractional thermal and plasma transfer within a non-metallic plate  

Ezzat, Magdy A. (Department of Mathematics, College of Science and Arts, Qassim University)
Publication Information
Smart Structures and Systems / v.27, no.1, 2021 , pp. 73-87 More about this Journal
Abstract
While in several publications the thermo-viscoelastic properties of solids have been documented, no attempt has been made to examine the action of coupled thermal and plasma wave in viscoelastic materials. In this paper, a new mathematical model for thermal and plasma transfer in an organic semiconductor was constructed with a time-fractional derivative of order α(0 < α ≤ 1) and a time-fractional integral of order β(0 < β ≤ 2), respectively. A two-dimensional problem is viewed for a half-space of viscoelastic thin-walled semiconductor whose surface is traction free and subjected to a heat flux with an exponentially decaying pulse. Laplace and Fourier's integral transforms are utilized. The carrier density, temperature, thermal stress, and viscoelastic displacement distributions have been obtained through the use of the theoretical model together with plasma and thermo-viscoelastic effects. The inversion technique for Fourier and Laplace transforms is carried out using a numerical technique based on Fourier series expansions. Comparisons are made with the results anticipated thru the coupled idea and generalized theory. The influence of the fractional-order parameter on all the regarded fields is examined.
Keywords
organic semiconductor; thermo-viscoelasticity; photothermal theory; fractional calculus; fourier transforms; laplace transforms;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Song, Y., Bai, J. and Ren, Z. (2012), "Reflection of plane waves in a semiconducting medium under photothermal theory", Int. J. Thermophys., 33(7), 1270-1287. https://doi.org/10.1007/s10765-012-1239-4   DOI
2 Sternberg, E. (1963), "On the analysis of thermal stresses in viscoelastic solids", Brown University Providence RI DIV of Applied Mathematics, 19, 213- 219.
3 Lord, H. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5   DOI
4 Mainardi, F. and Gorenflo, R. (2000), "On Mittag-Lettler-type function in fractional evolution processes", J. Comput. Appl. Math., 118(1-2), 283-299. https://doi.org/10.1016/S0377-0427(00)00294-6   DOI
5 Ezzat, M.A. and El-Bary, A.A. (2016), "Modeling of fractional magneto-thermoelasticity for a perfect conducting materials", Smart Struct. Syst., Int. J., 18(4), 707-731. https://doi.org/10.12989/sss.2016.18.4.707   DOI
6 Ezzat, M.A. (2001), "Free convection effects on perfectly conducting fluid", Int. J. Eng. Sci., 39(7), 799-819. https://doi.org/10.1016/S0020-7225(00)00059-8   DOI
7 Ezzat, M.A. (2006), "The relaxation effects of the volume properties of electrically conducting viscoelastic material", J. Mater. Sci. Eng. B., 130(1-3), 11-23. https://doi.org/10.1016/j.mseb.2006.01.020   DOI
8 Ezzat, M.A. and El-Bary, A.A. (2012), "MHD free convection flow with fractional heat conduction law", MHD, 48(4), 587-606. https://doi.org/10.22364/mhd   DOI
9 Gordon, J.P., Leite, R.C.C., Moore, R., Porto, S.P.S. and Whinnery, J.R. (1965), "Long-transient effects in lasers with inserted liquid samples", J. Appl. Phys., 36(1), 3-12. https://doi.org/10.1063/1.1713919   DOI
10 Podlubny, I. (1999), Fractional Differential Equations, Academic: New York, USA.
11 Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Mech. Tech. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351   DOI
12 Todorovic, D. (2003), "Plasma, thermal, and elastic waves in semiconductors", Rev. Sci. Instrum, 74(1), 582-585. https://doi.org/10.1063/1.1523133   DOI
13 Tam, A.C. (1983), Ultrasensitive Laser Spectroscopy (Academic, New York), pp. 1-108.
14 Adolfsson, K., Enelund, M. and Olsson, P. (2005), "On the fractional order model of visco-elasticity", Mech. Time-Depend. Mat., 9(1), 15-34. https://doi.org/10.1007/s11043-005-3442-1   DOI
15 Alzahrani, F.S. and Abbas, I.A. (2018), "Generalized photo-thermo-elastic interaction in a semiconductor plate with tworelaxation times", Thin-Wall. Struct., 129, 342-348. https://doi.org/10.1016/j.tws.2018.04.011   DOI
16 Bagley, R.L. and Torvik, P.J. (1983), "A theoretical basis for the application of fractional calculus to viscoelasticity", J. Rheol., 27(3), 201-210. https://doi.org/10.1122/1.549724   DOI
17 Caputo, M. (1974), "Vibrations on an infinite viscoelastic layer with a dissipative memory", J. Acous. Soc. Am., 56(3), 897-904. https://doi.org/10.1121/1.1903344   DOI
18 Caputo, M. and Mainardi, F. (1971), "A new dissipation model based on memory mechanism", Pure Appli. Geophys., 91, 134-147. https://doi.org/10.1007/BF00879562   DOI
19 Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity: a review of recent literature", Appl. Mech. Rev., 51(12), 705-729. https://doi.org/10.1115/1.3098984   DOI
20 Abbas, I.A. and Marin, M. (2017), "Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating", Phys. E., 87(3), 254-260. https://doi.org/10.1016/j.physe.2016.10.048   DOI
21 Itu, C., Ochsner, A., Vlase, S. and Marin, M.I. (2019), "Improved rigidity of composite circular plates through radial ribs", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(8), 1585-1593.   DOI
22 Meyers, M.A. and Chawla, K.K. (1999), Mechanical Behavior of Materials. Prentice-Hall, NJ, USA, Volume 98, pp. 103.
23 Youssef, H. (2010), "Theory of fractional order generalized thermoelasticity", J. Heat Transf., 132(1), 1-7. https://doi.org/10.1115/1.4000705   DOI
24 Povstenko, Y.Z. (2005), "Fractional heat conduction equation and associated thermal stress", J. Therm. Stress., 28(1), 83-102. https://doi.org/10.1080/014957390523741   DOI
25 Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1992), Numerical Recipes, (2nd ed.), Cambridge University Press, Cambridge, UK.
26 Sharma, S., Sharma, K. and Bhargava, R. (2013), "Effect of viscosity on wave propagation in anisotropic thermoelastic with Green-Naghdi theory type-II and type-III", Mat. Phys. Mech., 16,144-158.
27 Yu, Y-J., Tian, X-G. and Tian, J-L. (2013), "Fractional order generalized electro-magnetothermo-elasticity", Eur. J. Mech., A/Solids, 42,188-202. https://doi.org/10.1016/j.euromechsol.2013.05.006   DOI
28 Yu, Y-J., Hu, W. and Tian, X-G. (2014), "A novel generalized thermoelasticity model based on memory-dependent derivative", Int. J. Eng. Sci., 81, 123-134. https://doi.org/10.1016/j.ijengsci.2014.04.014.   DOI
29 Opsal, J. and Rosencwaig, A. (1985), "Thermal and plasma wave depth profiling in silicon", Appl. Phys. Lett., 47(5), 498-500. https://doi.org/10.1063/1.96105   DOI
30 Abbas, I.A. (2006), "Natural frequencies of a poroelastic hollow cylinder", Acta Mecc., 186(1-4), 229-237. https://doi.org/10.1007/s00707-006-0314-y   DOI
31 Othman, M.I., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., Int. J., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621
32 Mukhopadhyay, S. and Kumar, R. (2009), "Thermoelastic interactions on two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity", J. Therm. Stress., 32(4), 341-360. https://doi.org/10.1080/01495730802637183   DOI
33 Lotfy, K., Kumar, R., Hassan, W. and Gabr, M. (2018), "Thermomagnetic effect with microtemperature in a semiconducting photothermal excitation medium", Appl. Math. Mech., 39(5),783-796. https://doi.org/10.1007/s10483-018-2339-9   DOI
34 Song, Y., Todorovic, D.M., Cretin, B. and Vairac, P. (2010), "Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers", Int. J. Solids Struct., 47(14-15), 1871-1875. https://doi.org/10.1016/j.ijsolstr.2010.03.020   DOI
35 Sherief, H.H. and Abd El-Latief, M. (2016), "Modeling of variable Lame's Modulii for a FGM generalized thermoelastic half space", Lat. Am. J. Solids Struct., 13(4), 715-730.   DOI
36 Sherief, H.H. and Ezzat, M.A. (1994), "Solution of the generalized problem of thermoelasticity in the form of series of functions", J. Therm. Stress., 17(1), 75-95. https://doi.org/10.1080/01495739408946247   DOI
37 Sherief, H.H., El-Said, A. and Abd El-Latief, A. (2010), "Fractional order theory of thermoelasticity", Int. J. Solid Struct., 47(2), 269-275. https://doi.org/10.1016/j.ijsolstr.2009.09.034   DOI
38 Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties", Mecc., 49(7), 1697-1708. https://doi.org/10.1007/s11012-014-9948-3   DOI
39 Cattaneo, C. (1958), "Sur une forme de l'equation de la Chaleur eliminant le paradoxe d'une propagation instantaneee", C.R. Acad. Sci. Paris, 247(3), 431-433.
40 Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., Int. J., 22(2), 369-386. https://doi.org/10.12989/scs.2016.21.4.791   DOI
41 Sharma, S. and Sharma, K. (2014), "Influence of heat sources and relaxation time on temperature distribution in tissues", Int. J. Appl. Mech. Eng., 19(2), 427-433. https://doi.org/10.2478/ijame-2014-0029   DOI
42 Tam, A.C. (1989), Photothermal Investigations in Solids and Fluids (Academic, Boston), pp. 1-33
43 Kumar, R. and Abbas, I.A. (2013), "Deformation due to thermal source in micropolar thermoelastic media with thermal and conductive temperatures", J. Comput. Theor. Nanosci., 10(9), 2241-2247. https://doi.org/10.1166/jctn.2013.3193   DOI
44 Ezzat, M.A., Alsowayan, N.S., Al-Muhiameed, Z.I.A. and Ezzat, S.M. (2014), "Fractional modelling of Pennes' bioheat transfer equation", Heat Mass Trans., 50(7), 907-914. https://doi.org/10.1007/s00231-014-1300-x   DOI
45 Abbas, I.A. and Abo-Dahab, S.M. (2014), "On the numerical solution of thermal shock problem for generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", J. Comput. Theor. Nanosci., 11(3), 607-618. https://doi.org/10.1166/jctn.2014.3402   DOI
46 Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., Int. J., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103   DOI
47 Sherief, H.H. and Hussein, E.M. (2018), "Contour integration solution for a thermoelastic problem of a spherical cavity", Appl. Math. Comput., 320, 557-571. https://doi.org/10.1016/j.amc.2017.10.024   DOI
48 Ezzat, M.A., Othman, M.I. and El-Karamany, A.S. (2001), "State space approach to generalized thermo-viscoelasticity with two relaxation times", Int. J. Eng. Sci., 40(3), 283-302. https://doi.org/10.1016/S0020-7225(01)00045-3   DOI
49 Fujita, Y. (1990), "Integrodifferential equation which interpolates the heat equation and wave equation (I)", Osaka J. Math., 27(2), 309-321. https://doi.org/10.18910/4060   DOI
50 Gross, B. (1953), Mathematical Structure of the Theories of Viscoelasticity, Hemann, Paris, France.
51 Gurtin, M.E. and Sternberg, E. (1962), "On the linear theory of viscoelasticity", Arch. Rat. Mech. Anal., 11(1), 182-191. https://doi.org/10.1007/BF00253942   DOI
52 Hobiny, A. and Abbas, I.A. (2018), "Analytical solutions of photo-thermo-elastic waves in a non-homogenous semiconducting material", Res. Phys., 10, 385-390. https://doi.org/10.1016/j.rinp.2018.06.035   DOI
53 Ignaczak, J. (1989), Generalized Thermoelasticity and Its Applications. (Ed., Hetnarski, R.B.), Thermal Stresses III, Elsevier, New York, USA.
54 Ilioushin, A.A. (1968), "The approximation method of calculating the constructors by linear thermal viscoelastic theory", Mekhanika. Polimerov, Riga, 2, 168-178.
55 Ilioushin, A.A. and Pobedria, B.E. (1970), Mathematical Theory of Thermal Viscoelasticity, Nauka, Moscow, Russia.
56 Kimmich, R. (2002), "Strange kinetics, porous media, and NMR", Chem. Phys., 284(1-2), 243-285. https://doi.org/10.1016/S0301-0104(02)00552-9   DOI
57 Kiriyakova, V. (1994), "Generalized fractional calculus and applications", In: Pitman Research Notes in Mathematics Series, Volume 301, Longman-Wiley, New York, USA.
58 Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", J. Compos. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X   DOI
59 Kumar, R. and Devi, S. (2017), "Thermoelastic beam in modified couple stress thermoelasticity induced by laser pulse", Comput. Concrete, 19(6), 701-709. https://doi.org/10.12989/cac.2017.19.6.701   DOI
60 Kumar, R., Sharma, N. and Lata, P. (2016a), "Thermomechanical interactions in a transversely isotropic magnetothermoelastic with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Model., 40(13-14), 6560-6575. https://doi.org/10.1016/j.apm.2016.01.061   DOI
61 Kumar, R., Sharma, N. and Lata, P. (2016b), "Effects of Hall current in a transversely isotropic magnetothermoelastic two temperature medium with rotation and with and without energy dissipation due to normal force", Struct. Eng. Mech., Int. J., 57(1), 91-103. https://doi.org/10.12989/sem.2016.57.1.091   DOI
62 Kumar, R., Sharma, N. and Lata, P. (2018), "Effects of Hall current and two temperatures in transversely isotropic magnetothermoelastic with and without energy dissipation due to Ramp type heat", Mech. Adv. Mater. Struct., 24(8), 625-635. https://doi.org/10.1080/15376494.2016.1196769   DOI
63 Kreuzer, L.B. (1971), "Ultralow gas concentration infrared absorption spectroscopy", J. Appl. Phys., 42(7), 2934-2943. https://doi.org/10.1063/1.1660651   DOI
64 Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., Int. J., 27(4), 439-451. https://doi.org/10.12989/scs.2018.27.4.439   DOI
65 Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., Int. J., 22(3), 567-587. https://doi.org/10.12989/scs.2016.22.3.567   DOI