Browse > Article
http://dx.doi.org/10.12989/sss.2020.26.4.533

BrDSS: A decision support system for bridge maintenance planning employing bridge information modeling  

Nili, Mohammad Hosein (School of Civil Engineering, College of Engineering, University of Tehran)
Zahraie, Banafsheh (School of Civil Engineering, College of Engineering, University of Tehran)
Taghaddos, Hosein (School of Civil Engineering, College of Engineering, University of Tehran)
Publication Information
Smart Structures and Systems / v.26, no.4, 2020 , pp. 533-544 More about this Journal
Abstract
Effective bridge maintenance reduces bridge operation costs and extends its service life. The possibility of storing bridge life-cycle data in a 3D parametric model of the bridge through Bridge Information Modeling (BrIM) provides new opportunities to enhance current practices of bridge maintenance management. This study develops a Decision Support System (DSS), namely BrDSS, which employs BrIM and an efficient optimization model for bridge maintenance planning. The BrIM model in BrDSS extracts basic data of elements required for the optimization process and visualizes the inspection data and the optimization results to the user to help in decision makings. In the optimization module of the DSS, the specifically formulated Genetic Algorithm (GA) eliminates the chances of producing infeasible solutions for faster convergence. The practicality of the presented DSS was explored by utilizing the DSS in the maintenance planning of a bridge under operation in the southwest of Iran.
Keywords
bridge maintenance management; maintenance optimization; Decision Support System (DSS); Genetic Algorithm (GA); Bridge Information Modeling (BrIM);
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Huang, Y.H. and Huang, H.Y. (2012), "A model for concurrent maintenance of bridge elements", Autom. Constr., 21, 74-80. https://doi.org/10.1016/j.autcon.2011.05.014.   DOI
2 Huthwohl, P., Brilakis, I., Borrmann, A. and Sacks, R. (2018), "Integrating RC bridge defect information into BIM models", J. Comput. Civ. Eng., 32(3), 0000744. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000744.
3 Jeong, S., Hou, R., Lynch, J.P., Sohn, H. and Law, K.H. (2017), "An information modeling framework for bridge monitoring", Adv. Eng. Softw., 114, 11-31. http://dx.doi.org/10.1016/j.advengsoft.2017.05.009.   DOI
4 Jung, H.J., Lee, J.H., Yoon, S. and Kim, I.H. (2019), "Bridge inspection and condition assessment using unmanned aerial vehicles (UAVs): Major challenges and solutions from a practical perspective", Smart Struct. Syst., Int. J., 24(5), 669-681. https://doi.org/10.12989/sss.2019.24.5.669.
5 Kyle, B.R., Vanier, D.J., Kosovac, B., Froese, T.M. and Lounis, Z. (2002). "Visualizer: An interactive, graphical, decision-support tool for service life prediction for asset managers", Proceedings of the 9th International Conference on Durability of Building Materials and Components, Brisbane, Australia, March.
6 Maier, F. and Brinckerhoff, P. (2012), "Bridge information modeling: Opportunities, limitations, and spanning the chasm with current tools", Report No. CI1529, Autodesk University, USA.
7 Marzouk, M. and Hisham, M. (2011), "Bridge information modeling in sustainable bridge management", Proceedings of the International Conference on Sustainable Design and Construction, Missouri, USA, March. https://doi.org/10.1061/41204(426)57.
8 Marzouk, M.M., Hisham, M. and Al-Gahtani, K. (2014), "Applications of bridge information modeling in bridges life cycle", Smart Struct. Syst., Int. J., 13(3), 407-418. https://doi.org/10.12989/sss.2014.13.3.407.   DOI
9 Mawlana, M., Vahdatikhaki, F., Doriani, A. and Hammad, A. (2015), "Integrating 4D modeling and discrete event simulation for phasing evaluation of elevated urban highway reconstruction projects", Autom. Constr., 60, 25-38. https://doi.org/10.1016/j.autcon.2015.09.005.   DOI
10 McGuire, B., Atadero, R., Clevenger, C. and Ozbek, M. (2016), "Bridge information modeling for inspection and evaluation", J. Bridge Eng., 21(4), 04015076. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000850.   DOI
11 MDOT (2016), NBI Rating Guideline, Michigan, USA. https://www.michigan.gov.
12 Morcous, G. and Lounis, Z. (2005), "Maintenance optimization of infrastructure networks using genetic algorithms", Autom. Constr., 14(1), 129-142. https://doi.org/10.1016/j.autcon.2004.08.014.   DOI
13 O'Keeffe, A. (2014), "The state of the art of bridge information modelling from conceptual design through to operation", Int. J. 3D Inf. Model., 3(1), 29-39. https://doi.org/10.4018/ij3dim.2014010103.
14 Park, K.H., Lee, S.Y., Yoon, J.H., Cho, H.N. and Kong, J.S. (2008), "Optimum maintenance scenario generation for existing steel-girder bridges based on lifetime performance and cost", Smart Struct. Syst., Int. J., 4(5), 641-653. http://dx.doi.org/10.12989/sss.2008.4.5.641.   DOI
15 Rashidi, A. and Karan, E. (2018), "Video to BrIM: Automated 3D as-built documentation of bridges", J. Perform. Constr. Facil., 32(3), 04018026. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001163.   DOI
16 Sacks, R., Kedar, A., Borrmann, A., Ma, L., Brilakis, I., Hüthwohl, P., Daum, S., Kattel, U., Yosef, R. and Liebich, T. (2018), "Seebridge as next generation bridge inspection: Overview, information delivery manual and model view definition", Autom. Constr., 90, 134-145. https://doi.org/10.1016/j.autcon.2018.02.033.   DOI
17 Xue, F., Lu, W. and Chen, K. (2018), "Automatic generation of semantically rich as‐built building information models using 2D images: A derivative‐free optimization approach", Comput. Aided Civ. Infrastruct. Eng., 33(11), 926-942. https://doi.org/10.1111/mice.12378.   DOI
18 Seyed-Hosseini, S. and Khoshkish, H. (2003), "Mathematical programming approach to allocate local or natioanl resources for bridge maintenance rehabilitation and replacement planning (researech note)", Int. J. Eng-Trans. A Basics., 16(4), 383-392.
19 Shim, C., Kang, H., Dang, N.S. and Lee, D. (2017), "Development of BIM-based bridge maintenance system for cable-stayed bridges", Smart Struct. Syst., Int. J., 20(6), 697-708. https://doi.org/10.12989/sss.2017.20.6.697.
20 Xu, Y. and Turkan, Y. (2019), Advances in Informatics and Computing in Civil and Construction Engineering, Springer, Switzerland. https://doi.org/10.1007/978-3-030-00220-6_74.
21 Zambon, I., Vidovic, A., Strauss, A., Matos, J. and Friedl, N. (2018), "Prediction of the remaining service life of existing concrete bridges in infrastructural networks based on carbonation and chloride ingress", Smart Struct. Syst., Int. J., 21(3), 305-320. http://dx.doi.org/10.12989/sss.2018.21.3.305.
22 Zhu, J. and Liu, B. (2011), "Performance life cost-based maintenance strategy optimization for reinforced concrete girder bridges", J. Bridge Eng., 18(2), 172-178. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000344.   DOI
23 Chan, B., Guan, H., Hou, L., Jo, J., Blumenstein, M. and Wang, J. (2016), "Defining a conceptual framework for the integration of modelling and advanced imaging for improving the reliability and efficiency of bridge assessments", J. Civ. Struct. Health Monit., 6(4), 703-714. https://doi.org/10.1007/s13349-016-0191-6.   DOI
24 Adhikari, R.S., Bagchi, A. and Moselhi, O. (2014), "Automated condition assessment of concrete bridges with digital imaging", Smart Struct. Syst., Int. J., 13(6), 901-925. https://doi.org/10.12989/sss.2014.13.6.901.   DOI
25 Adibfar, A. and Costin, A. (2019), Advances in Informatics and Computing in Civil and Construction Engineering, Springer, Switzerland.
26 Akhoundan, M.R., Khademi, K., Bahmanoo, S., Wakil, K., Mohamad, E.T. and Khorami, M. (2018), "Practical use of computational building information modeling in repairing and maintenance of hospital building-case study", Smart Struct. Syst., Int. J., 22(5), 575-586. http://dx.doi.org/10.12989/sss.2018.22.5.575.
27 Alikhani, H. and Alvanchi, A. (2017), "Using genetic algorithms for long-term planning of network of bridges", Scientia Iranica., 26(5), 2653-2664. http://dx.doi.org/10.24200/sci.2017.4604.
28 Bazzucchi, F., Restuccia, L. and Ferro, G.A. (2018), "Considerations over the Italian road bridge infrastructure safety after the polcevera viaduct collapse: Past errors and future perspectives", Frattura Integr. Strutt., 46, 400-421. https://doi.org/10.3221/IGF-ESIS.46.37.   DOI
29 Boller, C., Starke, P., Dobmann, G., Kuo, C.M. and Kuo, C.H. (2015), "Approaching the assessment of ageing bridge infrastructure", Smart Struct. Syst., 15(3), 593-608. http://dx.doi.org/10.12989/sss.2015.15.3.593.   DOI
30 Brenner, J., Mitchell, A., Maier, F., Yockey, M., Pulikanti, S. and Michigan, W. (2018), "Development of 3D and 4D bridge models and plans", Report No. SPR-1647, Michigan, USA.
31 Chan, B., Guan, H., Jo, J. and Blumenstein, M. (2015), "Towards UAV-based bridge inspection systems: A review and an application perspective", Structural Monit. Maint., Int. J., 2(3), 283-300. https://doi.org/10.12989/smm.2015.2.3.283.
32 Davila Delgado, J.M., Butler, L.J., Gibbons, N., Brilakis, I., Elshafie, M.Z. and Middleton, C.R. (2016), "Management of structural monitoring data of bridges using BIM", 170(3), 204-218. https://doi.org/10.1680/jbren.16.00013.
33 Chassiakos, A., Vagiotas, P. and Theodorakopoulos, D. (2005), "A knowledge-based system for maintenance planning of highway concrete bridges", Adv. Eng. Softw., 36(11), 740-749. https://doi.org/10.1016/j.advengsoft.2005.03.020.   DOI
34 Chen, W.F. and Duan, L. (2014), Bridge Engineering Handbook: Construction and Maintenance, CRC press, Florida, USA.
35 Chipman, T., Costin, A., Eastman, R., Liebich, T., Smith, D. and Yang, D. (2016), "Bridge information modeling standardization", Report No. FHWA-HIF-16-011, FHWA, USA.
36 Costin, A., Adibfar, A., Hu, H. and Chen, S.S. (2018), "Building information modeling (BIM) for transportation infrastructureliterature review, applications, challenges and recommendations", Autom. Constr., 94, 257-281. https://doi.org/10.1016/j.autcon.2018.07.001.   DOI
37 Darbani, B.M. and Hammad, A. (2007), "Critical review of new directions in bridge management systems", Proceedings of the International Workshop on Computing in Civil Engineering, Pennsylvania, USA, July. https://doi.org/10.1061/40937(261)41.
38 Deng, L., Wang, W. and Yu, Y. (2015), "State-of-the-art review on the causes and mechanisms of bridge collapse", J. Perform. Constr. Facil., 30(2), 04015005. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000731.   DOI
39 Eastman, C., Eastman, C.M., Teicholz, P. and Sacks, R. (2011), BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, John Wiley & Sons, New Jersey, USA.
40 Ehlen, M.A. (2003), BridgeLCC 2.0 Users-Manual, US Department of Commerce, National Institute of Standards and Technology, Maryland, USA.
41 Elbehairy, H., Hegazy, T. and Soudki, K. (2009), "Integrated multiple-element bridge management system", J. Bridge Eng., 14(3), 179-187. https://doi.org/10.1061/(ASCE)1084-0702(2009)14:3(179).   DOI
42 Farran, M. and Zayed, T. (2015), "Fitness-oriented multi-objective optimisation for infrastructures rehabilitations", Struct. Infrastruct. Eng., 11(6), 761-775. http://dx.doi.org/10.1080/15732479.2014.905964.   DOI
43 Frangopol, D.M. and Liu, M. (2007), "Maintenance and management of civil infrastructure based on condition, safety, optimization, and life-cycle cost", Struct. Infrastruct. Eng., 3(1), 29-41. http://dx.doi.org/10.1080/15732470500253164.   DOI
44 Hammad, A., Zhang, C., Hu, Y. and Mozaffari, E. (2006), "Mobile model-based bridge lifecycle management system", Comput. Aided Civ. Infrastruct. Eng., 21(7), 530-547. https://doi.org/10.1111/j.1467-8667.2006.00456.x.   DOI
45 Han, P. (2017), "Geometry information extraction in 3D viewing model of industrial construction projects", M.Sc. Dissertation, University of Alberta, Alberta, Canada.
46 Huang, T.L., Zhou, H., Chen, H.P. and Ren, W.X. (2016), "Stochastic modelling and optimum inspection and maintenance strategy for fatigue affected steel bridge members", Smart Struct. Syst. Int. J., 18(3), 569-584. http://dx.doi.org/10.12989/sss.2016.18.3.569.   DOI