Browse > Article
http://dx.doi.org/10.12989/sss.2020.26.2.241

Swarm-based hybridizations of neural network for predicting the concrete strength  

Ma, Xinyan (China Airport Planning & Design Institute Co., Ltd.)
Foong, Loke Kok (Department for Management of Science and Technology Development, Ton Duc Thang University)
Morasaei, Armin (Department of Civil Engineering, K.N. Toosi University of Technology)
Ghabussi, Aria (Department of Civil Engineering, Central Tehran Branch, Islamic Azad University)
Lyu, Zongjie (Institute of Research and Development, Duy Tan University)
Publication Information
Smart Structures and Systems / v.26, no.2, 2020 , pp. 241-251 More about this Journal
Abstract
Due to the undeniable importance of approximating the concrete compressive strength (CSC) in civil engineering, this paper focuses on presenting four novel optimizations of multi-layer perceptron (MLP) neural network, namely artificial bee colony (ABC-MLP), grasshopper optimization algorithm (GOA-MLP), shuffled frog leaping algorithm (SFLA-MLP), and salp swarm algorithm (SSA-MLP) for predicting this crucial parameter. The used dataset consists of 103 rows of information concerning seven influential parameters (cement, slag, water, fly ash, superplasticizer, fine aggregate, and coarse aggregate). In this work, the best-fitted complexity of each ensemble is determined by a population-based sensitivity analysis. The GOA distinguished its self by the least complexity (population size = 50) and emerged as the second time-effective optimizer. Referring to the prediction results, all tested algorithms are able to construct reliable networks. However, the SSA (Correlation = 0.9652 and Error = 1.3939) and GOA (Correlation = 0.9629 and Error = 1.3922) performed more accurately than ABC (Correlation = 0.7060 and Error = 4.0161) and SFLA (Correlation = 0.8890 and Error = 2.5480). Therefore, the SSA-MLP and GOA-MLP can be promising alternatives to laboratorial and traditional CSC evaluative methods.
Keywords
concrete compressive strength; neural computing; metaheuristic optimization algorithms;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Akin, O. and Sahin, M. (2017), "Active neuro-adaptive vibration suppression of a smart beam", Smart. Struct. Syst., Int. J., 20(6), 657-668. https://doi.org/10.12989/sss.2017.20.6.657
2 Aljarah, I., Ala'M, A.Z., Faris, H., Hassonah, M.A., Mirjalili, S. and Saadeh, H (2018), "Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm", Cognitive Computat., 10(3), 478-495. https://doi.org/10.1007/s12559-017-9542-9   DOI
3 Alsarraf, J., Moayedi, H., Rashid, A.S.A., Muazu, M.A. and Shahsavar, A. (2019), "Application of PSO-ANN modelling for predicting the exergetic performance of a building integrated photovoltaic/thermal system", Eng. Comput, 35, 1-14. https://doi.org/10.1007/s00366-019-00721-4   DOI
4 Alshihri, M.M., Azmy, A.M. and El-Bisy, M.S. (2009), "Neural networks for predicting compressive strength of structural light weight concrete", Constr. Build. Mater., 23(6), 2214-2219. https://doi.org/10.1016/j.conbuildmat.2008.12.003   DOI
5 Altun, F., Kisim, O. and Aydin, K. (2008), "Predicting the compressive strength of steel fiber added lightweight concrete using neural network", Computat. Mater. Sci., 42(2), 259-265. https://doi.org/10.1016/j.commatsci.2007.07.011   DOI
6 Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Expert Syst. Applicat., 38(8), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156   DOI
7 Behnood, A., Behnood, V., Gharehveran, M.M. and Alyamac, K.E. (2017), "Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm", Constr. Build. Mater., 142, 199-207. https://doi.org/10.1016/j.conbuildmat.2017.03.061   DOI
8 Abbassi, R., Abbassi, A., Heidari, A.A. and Mirjalili, S. (2019), "An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models", Energy Convers. Manage., 179, 362-372. https://doi.org/10.1016/j.enconman.2018.10.069   DOI
9 Abrams, D.A. (1927), "Water-cement ratio as a basis of concrete quality", J. Proceedings, 23(2), 452-457.
10 Ahmed, S., Mafarja, M., Faris, H. and Aljarah, I. (2018), "Feature selection using salp swarm algorithm with chaos", Proceedings of the 2nd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, New York, NY, USA, March, pp. 65-69. https://doi.org/10.1145/3206185.3206198
11 Mehrabi, M., Pradhan, B., Moayedi, H. and Alamri, A. (2020), "Optimizing an Adaptive Neuro-Fuzzy Inference System for Spatial Prediction of Landslide Susceptibility Using Four Stateof-the-art Metaheuristic Techniques", Sensors, 20(6), 1723. https://doi.org/10.3390/s20061723   DOI
12 Nguyen, H., Bui, X.N., Bui, H.B. and Mai, N.L. (2018), "A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam", Neural Comput. Applicat., 32(8), 3939-3955. https://doi.org/10.1007/s00521-018-3717-5   DOI
13 Nguyen, H., Mehrabi, M., Kalantar, B., Moayedi, H. and Abdullahi, M.A.M. (2019a), "Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping", Geomat. Natural Hazards Risk, 10(1), 1667-1693. https://doi.org/10.1080/19475705.2019.1607782   DOI
14 Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201   DOI
15 Bui, D.T., Ghareh, S., Moayedi, H. and Nguyen, H. (2019a), "Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-019-00850-w
16 Mafarja, M., Aljarah, I., Faris, H., Hammouri, A.I., Ala'M, A.Z. and Mirjalili, S. (2019), "Binary grasshopper optimisation algorithm approaches for feature selection problems", Expert Syst. Applicat., 117, 267-286. https://doi.org/10.1016/j.eswa.2018.09.015   DOI
17 Mandal, S., Shilpa, M. and Rajeshwari, R. (2019), "Compressive Strength Prediction of High-Strength Concrete Using Regression and ANN Models", In: Sustainable Construction and Building Materials, Springer, Singapore, pp. 459-469.
18 McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Mathe. Biophys., 5(4), 115-133. https://doi.org/10.1007/BF02478259   DOI
19 Mehta, P.K. (1986), Concrete. Structure, properties and materials, National Academy of Sciences, Washington, DC, USA.
20 Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H. and Mirjalili, S.M. (2017), "Salp Swarm Algorithm: A bioinspired optimizer for engineering design problems", Adv. Eng. Software, 114, 163-191. https://doi.org/10.1016/j.advengsoft.2017.07.002   DOI
21 Mirjalili, S.Z., Mirjalili, S., Saremi, S., Faris, H. and Aljarah, I. (2018), "Grasshopper optimization algorithm for multi-objective optimization problems", Appl. Intel., 48(4), 805-820. https://doi.org/10.1007/s10489-017-1019-8   DOI
22 hahnasir, E.S., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamad, E.T., Shariati, A., Safa, M., Wakil, K. and Khorami, M. (2018), "Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors", Smart Struct. Syst., Int. J., 22(4), 413-424. https://doi.org/10.12989/sss.2018.22.4.413
23 Bui, D., Moayedi, H., Gor, M., Jaafari, A. and Foong, L.K. (2019b), "Predicting slope stability failure through machine learning paradigms", ISPRS Int. J. Geo-Inform., 8(9), 395. https://doi.org/10.3390/ijgi8090395   DOI
24 Bui, D.T., Moayedi, H., Kalantar, B., Osouli, A., Pradhan, B., Nguyen, H. and Rashid, A.S.A. (2019c), "A novel swarm intelligence-Harris hawks optimization for spatial assessment of landslide susceptibility", Sensors, 19(16), 3590. https://doi.org/10.3390/s19163590   DOI
25 Bui, X.N., Moayedi, H. and Rashid, A.S.A. (2019d), "Developing a predictive method based on optimized M5Rules-GA predicting heating load of an energy-efficient building system", Eng. Comput., 36, 931-940. https://doi.org/10.1007/s00366-019-00739-8
26 Chen, W., Panahi, M., Tsangaratos, P., Shahabi, H., Ilia, I., Panahi, S., Li, S., Jaafari, A. and Ahmad, B.B. (2019), "Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility", Catena, 172, 212-231. https://doi.org/10.1016/j.catena.2018.08.025   DOI
27 Qiao, W., Moayedi, H. and Foong, L.K. (2020), "Nature-inspired hybrid techniques of IWO, DA, ES, GA, and ICA, validated through a k-fold validation process predicting monthly natural gas consumption", Energy Build., 110023. https://doi.org/10.1016/j.enbuild.2020.110023   DOI
28 Nguyen, T.N., Yu, Y., Li, J., Gowripalan, N. and Sirivivatnanon, V. (2019c), "Elastic modulus of ASR-affected concrete An evaluation using Artificial Neural Network", Comput. Concrete, Int. J., 24(6), 541-553. https://doi.org/10.12989/cac.2019.24.6.541
29 Park, K., Kim, S. and Torbol, M. (2016), "Operational modal analysis of reinforced concrete bridges using autoregressive model", Smart. Struct. Syst., Int. J., 17(6), 1017-1030. https://doi.org/10.12989/sss.2016.17.6.1017   DOI
30 Prayogo, D. (2018), "Metaheuristic-based machine learning system for prediction of compressive strength based on concrete mixture properties and early-age strength test results", Civil Eng. Dimens., 20(1), 21-29. https://doi.org/10.9744/ced.20.1.21-29   DOI
31 Eusuff, M.M. and Lansey, K.E. (2003), "Optimization of water distribution network design using the shuffled frog leaping algorithm", J. Water Resour. Plann. Manage., 129(3), 210-225. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)   DOI
32 Moayedi, H. and Hayati, S. (2018a), "Artificial intelligence design charts for predicting friction capacity of driven pile in clay", Neural Comput. Applicat., 31, 1-17. https://doi.org/10.1007/s00521-018-3555-5
33 Rebouh, R., Boukhatem, B., Ghrici, M. and Tagnit-Hamou, A. (2017), "A practical hybrid NNGA system for predicting the compressive strength of concrete containing natural pozzolan using an evolutionary structure", Constr. Build. Mater., 149, 778-789. https://doi.org/10.1016/j.conbuildmat.2017.05.165   DOI
34 Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm", Comput. Concrete, Int. J., 22(4), 355-363. https://doi.org/10.12989/cac.2018.22.4.355
35 Saremi, S., Mirjalili, S. and Lewis, A. (2017), "Grasshopper optimisation algorithm: theory and application", Adv. Eng. Software, 105, 30-47. https://doi.org/10.1016/j.advengsoft.2017.01.004   DOI
36 Nguyen, H., Moayedi, H., Jusoh, W.A.W. and Sharifi, A. (2019b), "Proposing a novel predictive technique using M5Rules-PSO model estimating cooling load in energy-efficient building system", Eng. Comput., 35, 1-11. https://doi.org/10.1007/s00366-019-00735-y   DOI
37 Cheng, M.Y., Prayogo, D. and Wu, Y.W. (2013), "Novel genetic algorithm-based evolutionary support vector machine for optimizing high-performance concrete mixture", J. Comput. Civil Eng., 28(4), 06014003. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000347   DOI
38 Sayed, G.I., Khoriba, G. and Haggag, M.H. (2018), "A novel chaotic salp swarm algorithm for global optimization and feature selection", Appl. Intel., 48(10), 3462-3481. https://doi.org/10.1007/s10489-018-1158-6   DOI
39 Wang, B., Moayedi, H., Nguyen, H., Foong, L.K. and Rashid, A.S.A. (2019), "Feasibility of a novel predictive technique based on artificial neural network optimized with particle swarm optimization estimating pullout bearing capacity of helical piles", Eng. Comput., 36, 1-10. https://doi.org/10.1007/s00366-019-00764-7
40 de Almeida Neto, M.A., Fagundes, R.D.A.D.A. and Bastos-Filho, C.J. (2018), "Optimizing support vector regression with swarm intelligence for estimating the concrete compression strength", Proceedings of International Conference on Machine Learning and Data Mining in Pattern Recognition, July, pp. 126-137.
41 Fallahian, M., Khoshnoudian, F. and Talaei, S. (2018), "Application of couple sparse coding ensemble on structural damage detection", Smart Struct. Syst., Int. J., 21(1), 1-14. https://doi.org/10.12989/sss.2018.21.1.001
42 Gao, W., Alsarraf, J., Moayedi, H., Shahsavar, A. and Nguyen, H. (2019), "Comprehensive preference learning and feature validity for designing energy-efficient residential buildings using machine learning paradigms", Appl. Soft Comput., 105748. https://doi.org/10.1016/j.asoc.2019.105748
43 Guo, Z., Moayedi, H., Foong, L.K. and Bahiraei, M. (2020), "Optimal modification of heating, ventilation, and air conditioning system performances in residential buildings using the integration of metaheuristic optimization and neural computing", Energy Build., 214, 109866. https://doi.org/10.1016/j.enbuild.2020.109866   DOI
44 Hecht-Nielsen, R. (1992), Neural Networks for Perception, Elsevier, pp. 65-93.
45 Hornik, K (1991), "Approximation capabilities of multilayer feedforward networks", Neural Networks, 4(2), 251-257. https://doi.org/10.1016/0893-6080(91)90009-T   DOI
46 Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2018), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0
47 Moayedi, H. and Hayati, S. (2018b), "Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods", Appl. Soft Comput., 66, 208-219. https://doi.org/10.1016/j.asoc.2018.02.027   DOI
48 Moayedi, H. and Rezaei, A. (2017), "An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand", Neural Comput. Applicat., 31(2), 327-336. https://doi.org/10.1007/s00521-017-2990-z   DOI
49 Moayedi, H., Mosallanezhad, M. and Nazir, R. (2017), "Evaluation of maintained load test (MLT) and pile driving analyzer (PDA) in measuring bearing capacity of driven reinforced concrete piles", Soil Mech. Found. Eng., 54(3), 150-154. https://doi.org/10.1007/s11204-017-9449-1   DOI
50 Moayedi, H., Aghel, B., Vaferi, B., Foong, L.K. and Bui, D.T. (2019a), "The feasibility of Levenberg-Marquardt algorithm combined with imperialist competitive computational method predicting drag reduction in crude oil pipelines", J. Petrol. Sci. Eng., 185, 106634. https://doi.org/10.1016/j.petrol.2019.106634
51 Moayedi, H., Tien Bui, D., Kalantar, B. and Kok Foong, L. (2019b), "Machine-Learning-Based Classification Approaches toward Recognizing Slope Stability Failure", Appl. Sci., 9(21), 4638. https://doi.org/10.3390/app9214638   DOI
52 Yu, Y., Li, Y. and Li, J. (2015), "Nonparametric modeling of magnetorheological elastomer base isolator based on artificial neural network optimized by ant colony algorithm", J. Intel. Mater. Syst. Struct., 26(14), 1789-1798. https://doi.org/10.1177/1045389X15577649   DOI
53 Xi, W., Li, G., Moayedi, H. and Nguyen, H. (2019), "A particlebased optimization of artificial neural network for earthquakeinduced landslide assessment in Ludian county, China", Geomat. Natural Hazards Risk, 10(1), 1750-1771. https://doi.org/10.1080/19475705.2019.1615005   DOI
54 Yaseen, Z.M., Deo, R.C., Hilal, A., Abd, A.M., Bueno, L.C., Salcedo-Sanz, S. and Nehdi, M.L. (2018), "Predicting compressive strength of lightweight foamed concrete using extreme learning machine model", Adv. Eng. Software, 115, 112-125. https://doi.org/10.1080/19475705.2019.1615005   DOI
55 Yeh, I.-C. (2007), "Modeling slump flow of concrete using second-order regressions and artificial neural networks", Cement Concrete Compos., 29(6), 474-480. https://doi.org/10.1016/j.cemconcomp.2007.02.001   DOI
56 Yu, Y., Zhang, C., Gu, X. and Cui, Y. (2019), "Expansion prediction of alkali aggregate reactivity-affected concrete structures using a hybrid soft computing method", Neural Comput. Applicat., 31(12), 8641-8660. https://doi.org/10.1007/s00521-018-3679-7   DOI
57 Akande, K.O., Owolabi, T.O., Twaha, S. and Olatunji, S.O. (2014), "Performance comparison of SVM and ANN in predicting compressive strength of concrete", IOSR J. Comput. Eng., 16(5), 88-94.
58 Moayedi, H., Kalantar, B., Foong, L.K., Tien Bui, D. and Motevalli, A. (2019c), "Application of three metaheuristic techniques in simulation of concrete slump", Appl. Sci., 9(20), 4340. https://doi.org/10.3390/app9204340   DOI
59 Zhou, G., Moayedi, H., Bahiraei, M. and Lyu, Z. (2020), "Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings", J. Cleaner Product., 254, 120082. https://doi.org/10.1016/j.jclepro.2020.120082   DOI
60 Zhang, X., Zhang, Y., Shi, Y., Zhao, L. and Zou, C. (2012), "Power control algorithm in cognitive radio system based on modified Shuffled Frog Leaping Algorithm", AEU-Int. J. Electron. Commun., 66(6), 448-454. https://doi.org/10.1016/j.aeue.2011.10.004   DOI
61 Keshavarz, Z. and Torkian, H. (2018), "Application of ANN and ANFIS models in determining compressive strength of concrete", Soft Comput. Civil Eng., 2(1), 62-70. https://doi.org/10.22115/SCCE.2018.51114
62 Karaboga, D. (2005), "An idea based on honey bee swarm for numerical optimization", Technical report-tr06; Erciyes University, Engineering Faculty, Computer ….
63 Karaboga, D. and Basturk, B. (2007), "Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems", Proceedings of International Fuzzy Systems Association World Congress, pp. 789-798. https://doi.org/10.1007/978-3-540-72950-1_77
64 Karaboga, D., Akay, B. and Ozturk, C. (2007), "Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks", Proceedings of International Conference on Modeling Decisions for Artificial Intelligence, pp. 318-329. https://doi.org/10.1007/978-3-540-73729-2_30
65 Kheder, G.F., Al Gabban, A.M. and Abid, S.M. (2003), "Mathematical model for the prediction of cement compressive strength at the ages of 7 and 28 days within 24 hours", Mater. Struct., 36(10), 693. https://doi.org/10.1007/BF02479504   DOI
66 Kisi, O. (2007), "Streamflow forecasting using different artificial neural network algorithms", J. Hydrol. Eng., 12(5), 532-539. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:5(532)   DOI
67 Liping, Z., Weiwei, W., Yi, H., Yefeng, X. and Yixian, C. (2012), "Application of shuffled frog leaping algorithm to an uncapacitated SLLS problem", AASRI Procedia, 1, 226-231. https://doi.org/10.1016/j.aasri.2012.06.035   DOI
68 Liu, L., Moayedi, H., Rashid, A.S.A., Rahman, S.S.A. and Nguyen, H (2019), "Optimizing an ANN model with genetic algorithm (GA) predicting load-settlement behaviours of ecofriendly raft-pile foundation (ERP) system", Eng. Comput., 35, 1-13. https://doi.org/10.1007/s00366-019-00767-4   DOI
69 Moayedi, H., Tien Bui, D., Dounis, A. and Ngo, P.T.T. (2019e), "A novel application of league championship optimization (LCA): hybridizing fuzzy logic for soil compression coefficient analysis", Appl. Sci., 10(1), 67. https://doi.org/10.3390/app10010067   DOI
70 Moayedi, H., Osouli, A., Bui, D.T., Kok Foong, L., Nguyen, H. and Kalantar, B. (2019d), "Two novel neural-evolutionary predictive techniques of dragonfly algorithm (DA) and biogeography-based optimization (BBO) for landslide susceptibility analysis", Geomat. Natural Hazards Risk, 10(1), 2429-2453. https://doi.org/10.1080/19475705.2019.1699608   DOI
71 Moayedi, H., Tien Bui, D., Gor, M., Pradhan, B. and Jaafari, A. (2019f), "The feasibility of three prediction techniques of the artificial neural network, adaptive neuro-fuzzy inference system, and hybrid particle swarm optimization for assessing the safety factor of cohesive slopes", ISPRS Int. J. Geo-Inform., 8(9), 391. https://doi.org/10.3390/ijgi8090391   DOI
72 Moayedi, H., Gor, M., Lyu, Z. and Bui, D.T (2020), "Herding Behaviors of grasshopper and Harris hawk for hybridizing the neural network in predicting the soil compression coefficient", Measurement, 152, 107389. https://doi.org/10.1016/j.measurement.2019.107389   DOI
73 Nehdi, M., Djebbar, Y. and Khan, A. (2001), "Neural network model for preformed-foam cellular concrete", ACI Mater. J., 98(5), 402-409.