Browse > Article
http://dx.doi.org/10.12989/sss.2019.24.2.183

Design and fabrication of a new piezoelectric paper feeder actuator without mechanical parts  

Ghorbanirezaei, Shahryar (Department of Mechanical Engineering, Tarbiat Modares University)
Hojjat, Yousef (Department of Mechanical Engineering, Tarbiat Modares University)
Ghodsi, Mojtaba (Department of Mechanical and Industrial Engineering, Sultan Qaboos University)
Publication Information
Smart Structures and Systems / v.24, no.2, 2019 , pp. 183-191 More about this Journal
Abstract
A piezoelectric paper feeder actuator using Micro Virtual Roller (MVR) is proposed, designed, fabricated and tested. This actuator can drive a sheet of paper forward or backward without any mechanical parts, such as the costly and heavy rollers used in traditional paper feeders. In this paper feeder actuator, two vibrating stators which produce traveling waves are used to drive the paper. The vibrations of the stators are similar to those of piezoelectric motors and follow a similar procedure to move the paper. A feasibility study simulated the actuator in COMSOL Multiphysics Software. Traveling wave and elliptical trajectories were obtained and the dimensions of the stator were optimized using FEM so that the paper could move at top speed. Next, the eigenfrequencies of the actuator was determined. Experimental testing was done in order to validate the FEM results that revealed the relationships between speed and parameters such as frequency and voltage. Advantages of this new mechanism are the sharp decrease in power consumption and low maintenance.
Keywords
piezoelectric paper feeder actuator; piezoelectric motors; Micro Virtual Roller (MVR); elliptical trajectories; traveling wave;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Maeno, T., Tsukimoto, T. and Miyake, A. (1990), "The contact mechanism of an ultrasonic motor", Proceedings of the IEEE 7th International Symposium on Applications of Ferroelectrics, Champaign, Illinois, United States, June. https://doi.org/10.1109/ISAF.1990.200308
2 Marinkovic, D. and Marinkovic, Z. (2012), "On FEM modeling of piezoelectric actuators and sensors for thin-walled structures", Smart Struct. Syst., 9(5), 411-426. https://doi.org/10.12989/sss.2012.9.5.411   DOI
3 Marinkovic, D. and Rama, G. (2017), "Co-rotational shell element for numerical analysis of laminated piezoelectric composite structures", Compos. Part B: Eng., 125, 144-156. https://doi.org/10.1016/j.compositesb.2017.05.061   DOI
4 Paik, D.S., Yoo, K.H., Kang, C.Y., Cho, B.H., Nam, S. and Yoon, S.J. (2009), "Multilayer piezoelectric linear ultrasonic motor for camera module", J Electroceram, 22(1-3), 346-351.   DOI
5 Pan, Q., Huang, F., Chen, J., He, L.G., Li, W. and Feng, Z. (2016), "High-speed low- friction piezoelectric motors based on centrifugal force", IEEE T. Ind. Electron., 64(3), 2158-2167. https://doi.org/10.1109/TIE.2016.2623578.   DOI
6 Rama, G. (2017), "A 3-node piezoelectric shell element for linear and geometrically nonlinear dynamic analysis of smart structures", Facta Universitatis-Series Mechanical Engineering, 15(1), 31-44.   DOI
7 Rama, G., Marinkovic, D. and Zehn, M. (2017), "Efficient threenode finite shell element for linear and geometrically nonlinear analyses of piezoelectric laminated structures", J. Intel. Mat. Syst. Str., 29(3), 345-357. https://doi.org/10.1177%2F1045389X17705538   DOI
8 Sadeghbeigi Olyaie, M. and Razfar, M.R. (2013), "Numerical characterizations of a piezoelectric micromotor using topology optimization design", Smart Struct. Syst., 11(3), 241-259. https://doi.org/10.12989/sss.2013.11.3.241.   DOI
9 Sashida, T. (1998), An Introduction to Ultrasonic Motors, Oxford university press, Oxford, United Kingdom.
10 Sung, C. and Tien, S. (2015), "The study on piezoelectric transducers: theoretical analysis and experimental verification", Smart Struct. Syst., 15(4), 1063-1083. https://doi.org/10.12989/sss.2015.15.4.1063   DOI
11 Tavallaei, M.A., Atashzar, S.F. and Drangova, M. (2016), "Robust motion control of ultrasonic motors under temperature disturbance", IEEE T. Ind. Electron. 63(4), 2360-2368. https://doi.org/10.1109/TIE.2015.2499723.   DOI
12 Venkata Rao, K., Raja, S. and Munikenche, T. (2014), "Finite element modeling and bending analysis of piezoelectric sandwich beam with debonded actuators", Smart Struct. Syst., 13(1), 55-80. http://dx.doi.org/10.12989/sss.2014.13.1.055   DOI
13 Wallaschek, J. (1998), "Contact mechanics of piezoelectric ultrasonic motors", Smart Mater. Struct., 7(3), 369-381. https://doi.org/10.1088/0964-1726/7/3/011   DOI
14 Yoshita, R. and Okamoto, Y. (2002), "Micro piezoelectric actuator'', J. Japan society for precision Eng., 68(5), 645-648.   DOI
15 Zeng, X., Yue, Z., Zhao, B. and Wen, S.F. (2014), "Analysis of a three-dimensional FEM model of a thin piezoelectric actuator embedded in an infinite host structure", Adv. Mater. Res., 3(1), 237-257. https://doi.org/10.12989/amr.2014.3.1.237   DOI
16 Zenz, G., Berger, W., Gerstmayr, J., Nader M. and Krommer M. (2013) "Design of piezoelectric transducer arrays for passive and active modal control of thin plates", Smart Struct. Syst., 12(5), 547-577. https://doi.org/10.12989/sss.2013.12.5.547.   DOI
17 Sharma, S., Vig, R. and Kumar, N. (2015), "Active vibration control: considering effect of electric field on coefficients of PZT patches", Smart Struct. Syst., 16(6), 1091-1105. https://doi.org/10.12989/sss.2015.16.6.1091   DOI
18 Zhai, B., Lim, S.P., Lee, K.H., Dong, S. and Lu, P. (2000), "A modified ultrasonic linear motor", Sensor Actuat. A: Phys., 86(3), 154-158. https://doi.org/10.1016/S0924-4247(00)00439-8   DOI
19 Zhou, W., Li, H. and Yuan, F.G. (2016), "An anisotropic ultrasonic transducer for Lamb wave applications", Smart Struct. Syst., 17(6), 1055-1065. https://doi.org/10.12989/sss.2016.17.6.1055.   DOI
20 Zhao, C. (2011), Ultrasonic Motors Technologies and Applications, (2nd Ed.), Science press Beijing, Nanjing, Jiangsu, China.
21 Li, C. (2001), "Small-sized bionic ultrasonic linear motor", Small Spec. Machines, 11(6), 10-11.
22 Zhang, Q., Chen, W., Liu, Y., Liu, J. and Jiang, Q. (2017), "A frog shaped linear piezoelectric actuator using first order longitudinal vibration mode", IEEE T. Ind. Electron., 64(3), 2188-2195. https://doi.org/10.1109/TIE.2016.2626242.   DOI
23 Arefi, M. and Rahimi, G.H. (2012), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127   DOI
24 Hagood, N.W. and McFarland, A.J. (1995), "Modeling of a piezoelectric rotary ultrasonic motor", IEEE T. Ultrason. Ferr., 42(2), 210-224. https://doi.org/10.1109/58.365235.   DOI
25 Hojjat, Y. and Karafi, M.R. (2010), "Introduction of roller interface ultrasonic motor (RIUSM)", Sensor Actuat. A: Phys., 163(1), 304-310. https://doi.org/10.1016/j.sna.2010.07.002   DOI
26 Iino, A., Suzuki, K., Kasuga, M., Suzuki, M. and Yamanaka, T. (2000), "Development of a self-oscillating ultrasonic micromotor and its application to a watch", Ultrasonics, 38(1-8), 54-59. https://doi.org/10.1016/S0041-624X(99)00192-4.   DOI
27 Lin, S. and Xu, J. (2018), "Analysis on the cascade high power piezoelectric ultrasonic transducers", Smart Struct. Syst., 21(2), 151-161.   DOI