Browse > Article
http://dx.doi.org/10.12989/sss.2017.19.5.539

Thermoelectric viscoelastic materials with memory-dependent derivative  

Ezzat, Magdy A. (Department of Mathematics, Faculty of Education, Alexandria University)
El Karamany, Ahmed S. (Department of Mathematical and Physical Sciences, Nizwa University)
El-Bary, A.A. (Arab Academy for Science and Technology)
Publication Information
Smart Structures and Systems / v.19, no.5, 2017 , pp. 539-551 More about this Journal
Abstract
A mathematical model of electro-thermoelasticity has been constructed in the context of a new consideration of heat conduction with memory-dependent derivative. The governing coupled equations with time-delay and kernel function, which can be chosen freely according to the necessity of applications, are applied to several concrete problems. The exact solutions for all fields are obtained in the Laplace transform domain for each problem. According to the numerical results and its graphs, conclusion about the proposed model has been constructed. The predictions of the theory are discussed and compared with dynamic classical coupled theory. The result provides a motivation to investigate conducting thermoelectric viscoelastic materials as a new class of applicable materials.
Keywords
magneto-thermo-viscoelasticity; thermoelectric materials; memory-dependent derivative; time-delay; kernel function; numerical results;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Alfrey, T. and Gurnee, E.F. (1956), Rheology: Theory and Applications, Vol. 1. (Editor, Erich, F.R.), Academic Press, New York.
2 Atkinson, C. and Craster, R. (1995), "Theoretical aspects of fracture mechanics", Progress Aerospace Sci., 31(1) 1-83.
3 Biot, M. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253.   DOI
4 Caputo, M. (1967), "Linear models of dissipation whose Q is almost frequency independent II", Geophys. J. Roy. Astron. Soc., 13(5), 529-539.   DOI
5 Cattaneo, C. (1958), "Sur une forme de l'équation de la Chaleur éliminant le paradoxe d'une propagation instantaneee", C.R. Acad. Sci. Paris, 247(3), 431-433.
6 Chandrasekharaiah, D.S. (1998), "Hyperbolic thermoelasticity, A review of recent literature", Appl. Mech. Rev., 51(12), 705-729.   DOI
7 Diethelm, K. (2010), Analysis of Fractional Differential Equation: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer-Verlag, Berlin, Heideberg.
8 El-Karamany, A.S. and Ezzat, M.A. (2002), "On the boundary integral formulation of thermo-viscoelasticity theory", Int. J. Eng. Sci., 40(17), 1943-1956.   DOI
9 El-Karamany, A.S. and Ezzat, M.A. (2004), "Boundary integral equation formulation for the generalized thermoviscoelasticity with two relaxation times", Appl. Math. Comput., 151(2), 347-362.   DOI
10 El-Karamany, A.S. and Ezzat, M.A. (2011a), "On fractional thermoelasticity", Math. Mech. Solids, 16(3), 334-346.   DOI
11 El-Karamany, A.S. and Ezzat, M.A. (2011b), "Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity", J. Therm. Stress., 34(3), 264-284.   DOI
12 Ezzat, M.A. (2001), "Free convection effects on perfectly conducting fluid", Int. J. Eng. Sci., 39(7), 799-819.   DOI
13 Ezzat, M.A. (2004), "Fundamental solution in generalized magneto-thermoelasticity with two relaxation times for perfect conductor cylindrical region", Int. J. Eng. Sci., 42(13-14), 1503-1519.   DOI
14 Ezzat, M.A. (2006), "The relaxation effects of the volume properties of electrically conducting viscoelastic material", Mat. Sci. Eng. B, 130(1-3), 11-23.   DOI
15 Ezzat, M.A. (2008), "State space approach to solids and fluids", Can. J. Phys. Rev., 86(12), 1241-1250.   DOI
16 Ezzat, M.A. (2010), "Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer", Phys. B, 405(19), 4188-4194.   DOI
17 Ezzat, M.A. (2012),"State space approach to thermoelectric fluid with fractional order heat transfer", Heat Mass Transfer., 48(1), 71-82.   DOI
18 Ezzat, M.A. (2011a), "Magneto-thermoelasticity with thermoelectric properties an fractional derivative heat transfer", Phys. B, 406(1), 30-35.   DOI
19 Ezzat, M.A. (2011b), "Theory of fractional orderin generalized thermoelectric MHD", Appl. Math. Model., 35 (10), 4965-4978.   DOI
20 Ezzat, M.A. (2011c), "Thermoelectric MHD with modified Fourier's law", Int. J. Therm. Sci., 50 (4), 449-455.   DOI
21 Ezzat, M.A. and El-Bary, A.A. (2016), "Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder", Int. J. Therm. Sci., 108(10), 62-69.   DOI
22 Ezzat, M.A. and El-Bary, A.A. (2016a), "Modeling of fractional magneto-thermoelasticity for a perfect conducting materials", Smart Struc. Syst., 18(4), 707-731.   DOI
23 Ezzat, M.A. and El-Bary, A.A. (2016b), "Unified fractional derivative models of magneto-thermo-viscoelasticity theory", Arch. Mech., 68(4), 285-308.
24 Ezzat, M.A. and El-Karamany, A.S. (2002a), "The uniqueness and reciprocitytheorems for generalized thermoviscoelasticity for anisotropicmedia", J. Therm. Stress., 25(6), 507-522.   DOI
25 Ezzat, M.A. and El-Karamany, A.S. (2002b), "The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times", Int. J. Eng. Sci., 40(11), 1275-1284.   DOI
26 Ezzat, M.A. and El-Karamany, A.S. (2003), "On uniqueness and reciprocity theorems for generalized thermoviscoelasticity with thermal relaxation", Can. J. Phys., 81(6), 823-833.   DOI
27 Ezzat, M.A. and El-Karamany, A.S. (2012), "Fractional thermoelectric viscoelastic materials", J. Appl. Poly. Sci., 124(3), 2187-2199.   DOI
28 Ezzat, M.A. and El-Karamany, A.S. (2011a), "Fractional order theory of a perfect conducting thermoelastic medium", Can. J. Phys., 89 (3), 311-318.   DOI
29 Ezzat, M.A. and El-Karamany, A.S. (2011b), "Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures", ZAMP, 62(5), 937-952.   DOI
30 Ezzat, M.A. and El-Karamany, A.S. (2011c), "Theory of fractional order in electro-thermoelasticity", Euro. J. Mech. A- Solid, 30(4), 491-500.   DOI
31 Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2014), "Generalized thermo-viscoelasticity with memory-dependent derivatives", Int. J. Mech. Sci., 89(12), 470- 475.   DOI
32 Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2015), "Electro-magnetic waves in generalized thermo-viscoelasticity for different theories", Int. J. Appl. Electromag. Applic., 47 (1), 95-111.
33 Ezzat, M.A., El-Karamany, A.S. and Samaan, A. (2001), "State space formulation to generalized thermoviscoelasticity with thermal relaxation", J. Therm. Stress. 24(9), 823-846.   DOI
34 Ezzat, M.A. and Abd-Elaal, M.Z. (1997a), "Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium", J. Frank. Ins., 4(4), 685-706.
35 Ezzat, M.A. and Abd-Elaal, M.Z. (1997b), "State space approach to viscoelastic fluid flow of hydromagnetic fluctuating boundary-layer through a porous medium", ZAMM, 77(3), 197-207.   DOI
36 Ezzat, M. A. and Youssef, H.M. (2010), "Stokes' first problem for an electro-conducting micropolar fluid with thermoelectric properties", Can. J. Phys., 88(1), 35-48.   DOI
37 Fung, Y.C. (1980), Foundations of solid mechanics, Prentice-Hall, Englewood Cliffs, N.J.
38 Ezzat, M.A. and Youssef, H.M. (2014), "Two-temperature theory in three-dimensional Problem for thermoelastic half space subjected to ramp type heating", Mech. Adv. Mater. Struct., 21(4) 293-304.
39 Ezzat, M.A., Zakaria, M., Shaker, O. and Barakat, F. (1996), "State space formulation to viscoelastic fluid flow of magnetohydrodynamic free convection through a porous medium", Acta Mech., 119(1), 147-164.   DOI
40 Ferry, J.D. (1970), Viscoelastic properties of polymers, J. Wiley & Sons, New York.
41 Gurtin, M.E. and Sternberg, E. (1962), "On the linear theory of viscoelasticity", Arch.Rat. Mech. Anal., 11(1), 182-191.
42 Gross, B. (1953), Mathematical Structure of the Theories of Viscoelasticity. Hemann, Paris.
43 Hetnarski, R.B. and Ignaczak, J. (1999), "Generalized thermoelasticity", J. Therm. Stress., 22(4-5), 451-476.   DOI
44 Hicks, L.D. and Dresselhaus, M.S. (1993), "Thermoelectric figure of merit of a one dimensional conductor", Physics Review B 47(24), 16631-16634.   DOI
45 Hiroshige, Y., Makoto, O. and Toshima, N. (2007), "Thermoelectric figure-of-merit of iodine-doped copolymer of phenylenevinylene with dialkoxyphenylenevinylene", Synthetic Metals, 157(6) 467- 474.   DOI
46 Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transform", Comput. Appl. Math., 10(1), 113-132.   DOI
47 Ignaczak, J. and Ostoja-starzeweski, M. (2009), Thermoelasticity with finite wave speeds, Oxford University Press, Oxford, UK.
48 Kaliski, S. and Nowacki, W. (1963), "Combined elastic and electro-magnetic waves produced by thermal shock in the case of a medium of finite electric conductivity", Int. J. Eng. Sci., 1(2), 163-175.   DOI
49 Ilioushin, A. A. (1968), "The approximation method of calculating the constructures by linear thermal viscoelastic theory", Mekhanika Polimerov, Riga, 2, 168-178.
50 Ilioushin, A.A. and Pobedria, B.E. (1970), Mathematical Theory of Thermal Viscoelasticity, Nauka, Moscow.
51 Koltunov, M.A. (1976), Creeping and Relaxation, Nauka, Moscow.
52 Kumar R. and Kumar R. (2013), "Wave propagation at the boundary surface of elastic and initially stressed viscothermoelastic diffusion with voids media", Meccanica, 48(9), 2173-2188.   DOI
53 Kumar R., Sharma, K.D. and Garg, S.K. (2015), "Fundamental solution in micropolar viscothermoelastic solids with void", Int. J. Appl. Mech Eng., 20(1), 109-125.   DOI
54 Leitman, J.M. and Fisher, G.M.C. (1973), The Linear Theory of Viscoelasticity, In: Handbuch der Physik, vol. VI a/3. Springer-Verlag, Berlin.
55 Lord, H. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids, 15 (5), 299-309.   DOI
56 Mahan, G., Sales, B. and Sharp, J. (1997), "Thermoelectric materials: New approaches to an old problem", Phys. Today, 50(3), 42-47.   DOI
57 Morelli, D.T. (1997), Thermoelectric Devices, In: (Eds., Trigg, G.L. and Immergut, EH.), Encyclopedia of Applied Physics, Wiley-VCH, New York, 21, 339-354.
58 Pobedria, B.E. (1984), Coupled Problems in Continuum Mechanics, Journal of Durability Plasticity, no. 1, Moscow State University, Moscow.
59 Povstenko, Y.Z. (2005), "Fractional heat conduction equation and associated thermal stresses", J. Therm. Stress., 28(1), 83-102.   DOI
60 Podlubny, I. (1999), Fractional Differential Equations, Academic Press, New York.
61 Rajagopal, K. and Saccomandi, G. (2007), "On the dynamics of non-linear viscoelastic solids with material moduli that depend upon pressure", Int. J. Eng. Sci., 45 (1) 41-54.
62 Rowe, D.M. (1995), Handbook of Thermoelectrics, CRC Press.
63 Sherief, H.H., El-Said, A. and Abd El-Latief, A. (2010), "Fractional order theory of thermoelasticity", Int. J. Solids Struct., 47(2), 269-275.   DOI
64 Shereif, H.H. and Abd El-Latief, A. (2015), "Application of fractional order theory of thermoelasticity to a 1D problem for a half-space", J. Appl. Math. Mech., 94 (6), 509-515.
65 Shercliff, J.A. (1979), "Thermoelectric magnetohydrodynamics", J. Fluid Mech., 91(3), 231-251.   DOI
66 Staverman, A.J. and Schwarzl, F. (1956), Die Physik der Hochpolymeren, Vol. 4, (Editor Stuart, H.A.), Springer Verlag, Berlin, Chapt. 1.
67 Sternberg, E. (1963), "On the analysis of thermal stresses in viscoelastic solids", Brown Univ. Dir. Appl. Math. R, 19(9) 213-219.
68 Tschoegl, N. (1997), "Time dependence in material properties: An overview", Mech. Time-Depend. Mater., 1(1) 3-31.   DOI
69 Wang, J.L. and Li, H.F. (2011), "Surpassing the fractional derivative: Concept of the memory-dependent derivative", Comput. Math. Appli., 62(3), 1562-1567.   DOI
70 Yu, Y.J, Hu, W. and Tian, X.G. (2014), "A novel generalized thermoelasticity model based on memory-dependent derivative", Int. J. Eng. Sci., 81(8), 123-134.   DOI