Browse > Article
http://dx.doi.org/10.12989/sss.2016.17.6.859

Damage detection of a cable-stayed bridge based on the variation of stay cable forces eliminating environmental temperature effects  

Chen, Chien-Chou (Department of Construction Engineering, National Yunlin University of Science and Technology)
Wu, Wen-Hwa (Department of Construction Engineering, National Yunlin University of Science and Technology)
Liu, Chun-Yan (Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology)
Lai, Gwolong (Department of Construction Engineering, National Yunlin University of Science and Technology)
Publication Information
Smart Structures and Systems / v.17, no.6, 2016 , pp. 859-880 More about this Journal
Abstract
This study aims to establish an effective methodology for the detection of instant damages occurred in cable-stayed bridges with the measurements of cable vibration and structural temperatures. A transfer coefficient for the daily temperature variation and another for the long-term temperature variation are firstly determined to eliminate the environmental temperature effects from the cable force variation. Several thresholds corresponding to different levels of exceedance probability are then obtained to decide four upper criteria and four lower criteria for damage detection. With these criteria, the monitoring data for three stay cables of Ai-Lan Bridge are analyzed and compared to verify the proposed damage detection methodology. The simulated results to consider various damage scenarios unambiguously indicate that the damages with cable force changes larger than ${\pm}1%$ can be confidently detected. As for the required time to detect damage, it is found that the cases with ${\pm}2%$ of cable force change can be discovered in no more than 6 hours and those with ${\pm}1.5%$ of cable force change can be identified in at most 9 hours. This methodology is also investigated for more lightly monitored cases where only the air temperature measurement is available. Under such circumstances, the damages with cable force changes larger than ${\pm}1.5%$ can be detected within 12 hours. Even though not exhaustively reflecting the environmental temperature effects on the cable force variation, both the effective temperature and the air temperature can be considered as valid indices to eliminate these effects at high and low monitoring costs.
Keywords
cable-stayed bridge; cable force; effective temperature; daily variation; long-term variation; transfer coefficient; damage detection; air temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cao, Y.H., Yim, J.S., Zhao, Y. and Wang, M.L. (2011), "Temperature effects on cable stayed bridge using health monitoring system: a case study", Struct. Health. Monit., 10(5), 523-537.   DOI
2 Chen, C.C., Wu, W.H. and Liu, C.Y. (2012), "Effects of temperature variation on cable forces of an extradosed bridge", Proceedings of 6th European Workshop on Structural Health Monitoring, Dresden, Germany, July.
3 Chen, C.C., Wu, W.H. and Liu, C.Y. (2014), "Decomposed components of the effective temperature history and their correlation with the variation of stay cable force", Proceedings of the 7th European Workshop on Structural Health Monitoring, Nantes, France, July.
4 Chen, C.C., Wu, W.H. and Liu, C.Y. (2015), "Daily and long-term variations of the effective temperature history and their correlation with those of stay cable force", Proceedings of the 2nd International Conference on Sustainable Urbanization, Hong Kong, January.
5 Chen C.C., Wu, W.H. and Shih, Y.D. (2010), "Effects of environmental variability on stay cable frequencies", Proceedings of the 2nd International Symposium on Life-Cycle Civil Engineering, Taipei, Taiwan, October.
6 Chen, C.C., Wu, W.H. and Tseng, H.Z. (2008), "Measurement of ambient vibration signal of shorter stay cables from stressing to service stages", Proceedings of the 4th European Workshop on Structural Health Monitoring, Krakow, Poland, July.
7 Cunha, A., Caetano, E., Magalhaces, F. and Moutinho, C. (2013), "Recent perspectives in dynamic testing and monitoring of bridges", Struct. Control Health., 20(6), 853-877.   DOI
8 Degrauwe, D., De Roeck, G. and Lombaert, G. (2009), "Uncertainty quantification in the damage assessment of a cable-stayed bridge by means of fuzzy numbers", Comput. Struct., 87(17-18), 1077-84.   DOI
9 Ding, Y.L., Li, A.Q. and Deng, Y. (2010), "Structural damage warning of a long-span cable-stayed bridge using novelty detection technique based on wavelet packet analysis", Adv. Struct. Eng., 13(2), 291-298.   DOI
10 Ding, Y.L., Wang, G.X., Zhou, G.D. and Li, A. (2013), "Life-cycle simulation method of temperature field of steel box girder for Runyang cable-stayed bridge based on field monitoring data", China Civil Eng. J., 46(5), 129-136.
11 Dohler, M., Hille, F., Mevel, L. and Rucker, W. (2014), "Structural health monitoring with statistical method during progressive damage test of S101 bridge", Eng. Struct., 69, 183-193.   DOI
12 Li, H.J. (2009), "Temperature effect analysis for structural state estimation of PC cable-stayed bridge", Archit. Env. Eng., 31(5), 81-85.
13 Min, Z.H., Sun, L.M. and Dan, D.H. (2009), "Effect analysis of environmental factors on structural modal parameters of a cable-stayed bridge", J. Vib. Shock, 28(10), 99-105.
14 Min, Z.H., Sun, L.M. and Zhong, Z. (2011), "Effect analysis of environmental temperature on dynamic properties of cable- stayed bridge", J. Tongji. U., 39(4), 488-494.
15 Ni, Y.Q., Zhou, H.F. and Ko, J.M. (2009), "Generalization capability of neural network models for temperature-frequency correlation using monitoring data", J. Struct. Eng. - ASCE, 135(10), 1290-1300.   DOI
16 Ni, Y.Q., Hua, X.G., Fan, K.Q. and Ko, J.M. (2005), "Correlating modal properties with temperature using long-term monitoring data and support vector machine technique", Eng. Struct., 27(12), 1762-73.   DOI
17 Ni, Y.Q., Hua, X.G., Wong, K.Y. and Ko, J.M. (2007), "Assessment of bridge expansion joints using long-term displacement and temperature measurement", J. Perform Constr. Facil. - ASCE, 21(2), 143-151.   DOI
18 Ni, Y.Q., Zhou, H.F., Chan, K.C. and Ko, J.M. (2008), "Modal flexibility analysis of cable-stayed Ting Kau bridge for damage identification", Comput.-Aided Civ. Infrastruct. Eng., 23(3), 223-236.   DOI
19 Sun, L.M., Zhou, Y. and Li, X.L. (2012), "Correlation study on modal frequency and temperature effects of a cable-stayed bridge model", Adv. Mater. Res., 446-449, 3264-3272.   DOI
20 Trker, T. and Bayraktar, A. (2014), "Structural safety assessment of bowstring type RC arch bridges using ambient vibration testing and finite element model calibration", Measurement, 58, 33-45.   DOI
21 Whelan, M.J. and Janoyan, K.D. (2010) "In-service diagnostics of a highway bridge from a progressive damage case study", J. Bridge Eng. - ASCE, 15(5), 597-607.   DOI
22 Wu, Z.H. and Huang, N.E. (2009), "Ensemble empirical mode decomposition: a noise-assisted data analysis method", Adv. Adapt. Data Anal., 1(1), 1-41.   DOI
23 Xu, Z.D. and Wu, Z.S. (2007), "Simulation of the effect of temperature variation on damage detection in a long-span cable-stayed bridge", Struct. Health Monit., 6(3), 177-189.   DOI
24 Zhou, Y., Sun, L.M. and Sun, S.W. (2013), "Temperature field and its effects on a long-span steel cable-stayed bridge based on monitoring data", Proceedings of the 13th East Asia-Pacific Conference on Structural Engineering and Construction, Sapporo, Japan, September.
25 Yao, C. and Li, Y.D. (2012), "Research on temperature influences in cable-stayed bridges' health monitoring", Appl. Mech. Mater., 188, 162-167.   DOI
26 Zhou, H.F., Ni, Y.Q. and Ko, J.M. (2010), "Constructing input to neural networks for modeling temperature-caused modal variability: mean temperatures, effective temperatures, and principal components of temperatures", Eng. Struct., 32(6), 1747-1759.   DOI
27 Zhou, H.F., Ni, Y.Q. and Ko, J.M. (2012), "Eliminating temperature effect in vibration-based structural damage detection", J. Eng. Mech. - ASCE, 137(12), 785-796.   DOI