Browse > Article
http://dx.doi.org/10.12989/sss.2012.9.5.411

On FEM modeling of piezoelectric actuators and sensors for thin-walled structures  

Marinkovic, Dragan (Institute of Mechanics, Berlin Institute of Technology)
Marinkovic, Zoran (Faculty of Mechanical Engineering, University of Nis)
Publication Information
Smart Structures and Systems / v.9, no.5, 2012 , pp. 411-426 More about this Journal
Abstract
Thin-walled adaptive structures render a large and important group of adaptive structures. Typical material system used for them is a composite laminate that includes piezoelectric material based sensors and actuators. The piezoelectric active elements are in the form of thin patches bonded onto or embedded into the structure. Among different types of patches, the paper considers those polarized in the thickness direction. The finite element method (FEM) imposed itself as an essential technical support for the needs of structural design. This paper gives a brief description of a developed shell type finite element for active/adaptive thin-walled structures and the element is, furthermore, used as a tool to consider the aspect of mesh distortion over the surface of actuators and sensors. The aspect is of significance for simulation of behavior of adaptive structures and implementation of control algorithms.
Keywords
thin-walled adaptive structures; piezoelectric actuators and sensors; FEM mesh distortion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1970), "Analysis of thick and thin shell structures by curved finite elements", Int. J. Numer. Meth. Eng., 2(3), 419-451.   DOI
2 Benjeddou, A. (2000), "Advances in piezoelectric finite element modeling of adaptive structural elements: a survey", Comput. Struct., 76(1-3), 347-363.   DOI   ScienceOn
3 Benjeddou, A., Deü, J.F. and Letombe, S. (2002) "Free vibrations of simply-supported piezoelectric adaptive plates: an exact sandwich formulation", Thin. Wall. Struct., 40(7), 573-593.   DOI
4 Gandhi, M.V. and Thompson, B.S. (1992), Smart materials and structures, Chapman and Hall, London. Hwang, W.S. and Park, H.C. (1993), "Finite element modeling of piezoelectric sensors and actuators", AIAA J., 31(5), 930-937.   DOI   ScienceOn
5 Klinkel, S. and Wagner, W. (2006), "A geometrically non-linear piezoelectric solid shell element based on a mixed multi-field variational formulation", Int. J. Num. Meth. Eng., 65(3), 349-382.   DOI   ScienceOn
6 Lammering, R. (1991), "The application of a finite shell element for composites containing piezo-electric polymers in vibration control", Comput. Struct., 41(5), 1101-1109.   DOI   ScienceOn
7 Liu, G.R., Dai, K.Y., Lim, K.M. and Gu, Y.T. (2002) "A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures", Comput. Mech., 29(6), 510-519.   DOI   ScienceOn
8 Liu, G.R., Dai, K.Y., Lim, K.M. and Gu, Y.T. (2003), "A radial point interpolation method for simulation of twodimensional piezoelectric structures", Smart Mater. Struct., 12(2), 171-180.   DOI   ScienceOn
9 Liu, G.R., Dai, K.Y. and Nguyen, T.T. (2007), "Theoretical aspects of the smoothed finite element method (SFEM)", Int. J. Num. Meth. Eng., 71(8), 902-930.   DOI   ScienceOn
10 Long, C.S., Loveday, P.W. and Groenwold, A.A. (2006), "Planar four node piezoelectric elements with drilling degrees of freedom", Int. J. Num. Meth. Eng., 65(11), 1802-1830.   DOI   ScienceOn
11 Marinkovic, D. (2007), A new finite composite shell element for piezoelectric active structures, Ph.D. Thesis, Otto-von-Guericke Universitaet Magdeburg, Germany, Fortschritt-Berichte VDI, Reihe 20: Rechnerunterstuetzte Verfahren, Nr. 406, Duesseldorf.
12 Marinkovic, D., Koeppe, H. and Gabbert, U. (2006), "Numerically efficient finite element formulation for modeling active composite laminates", Mech. Adv. Mater. Struct., 13, 379-392.   DOI   ScienceOn
13 Marinkovi, D., Koppe, H. and Gabbert, U. (2007), "Accurate modeling of the electric field within piezoelectric layers for active composite structures", Int. J. Intell. Mater. Syst., 18(5), 503-513.   DOI
14 Marinkovi, D., Koppe, H. and Gabbert U. (2009), "Aspects of modeling piezoelectric active thin-walled structures", Int. J. Intell. Mater. Syst., 20(15), 1835-1844.   DOI   ScienceOn
15 Nguyen-Van, H., Mai-Duy, N. and Tran-Cong, T. (2008), "Analysis of piezoelectric solids with an efficient nodebased smoothing element", Proceedings of the WCCM8 and ECCOMAS 2008, Venice, Italy.
16 Ohs, R.R. and Aluru, N.R. (2001), "Meshless analysis of piezoelectric devices", Comput. Mech., 27(1), 23-36.   DOI   ScienceOn
17 Rudolf, C., Martin, T. and Wauer, J. (2010), "Control of PKM machine tools using Piezoelectric self-sensing Actuators on basis of the functional principle of a scale with a vibrating string", Smart Struct. Syst., 6(2), 167- 182.   DOI
18 Sze, K.Y. and Pan, Y.S. (1999), "Hybrid finite element models for piezoelectric materials", J. Sound Vib., 226(3), 519-547.   DOI   ScienceOn
19 Tzou, H.S. and Tseng, C.I. (1990), "Distributed piezoelectric sensor/actuator design for dynamic measurement/ control of distributed parameter systems: a finite element approach", J. Sound Vib., 138, 17-34.   DOI   ScienceOn
20 Ye, L., Lin, Y., Dong, W., Limin, Z. and L, C. (2010), "Piezo-activated guided wave propagation and interaction with damage in tubular structures", Smart Struct.Syst., 6(7), 835-849.   DOI
21 Zemcik, R., Rolfes, R., Rose, M. and Tessmer, J. (2006), "High-performance 4-node shell element with piezoelectric coupling", Mech. Adv. Mater. Struct., 13, 393-401.   DOI   ScienceOn