Browse > Article
http://dx.doi.org/10.12989/scs.2022.43.5.661

The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch  

Yaylaci, Murat (Department of Civil Engineering, Recep Tayyip Erdogan University)
Abanoz, Merve (Department of Construction Technology, Kastamonu University)
Yaylaci, Ecren Uzun (Surmene Faculty of Marine Science, Karadeniz Technical University)
Olmez, Hasan (Department of Marine Engineering Operations, Karadeniz Technical University)
Sekban, Dursun Murat (Department of Marine Engineering Operations, Karadeniz Technical University)
Birinci, Ahmet (Department of Civil Engineering, Karadeniz Technical University)
Publication Information
Steel and Composite Structures / v.43, no.5, 2022 , pp. 661-672 More about this Journal
Abstract
The solution of contact problems is extremely important as we encounter many situations involving such problems in our daily lives. One of the most important parameters effective in solving contact problems is the materials of the parts in contact. While it is relatively easy to solve the contact mechanics of the systems created with traditional materials with a homogeneous microstructure and mechanical distribution, it may be more difficult to solve the contact problem of new generation materials that do not show a homogeneous distribution. As a result of this situation, it is seen that studies on contact problems of materials that do not exhibit such a homogeneous internal structure and mechanical properties are extremely limited in the literature. In this context, in this study, analytical and numerical analyzes of a contact problem created using functionally graded materials were carried out and the results were evaluated mutually. It has been decided that the contact areas and contact pressures acquired from numerical method are reasonably appropriate with the results obtained from the analytical method.
Keywords
contact mechanics; finite element method; functionally graded layer; theory of elasticity;
Citations & Related Records
Times Cited By KSCI : 19  (Citation Analysis)
연도 인용수 순위
1 Cannillo, V., Lusvarghi, L., Siligardi, C. and Sola, A. (2007), "Prediction of the elastic properties profile in glass-alumina functionally graded materials", J. Eur. Ceram. Soc., 27(6), 2393-2400. https://doi.org/10.1016/j.jeurceramsoc.2006.09.009.   DOI
2 Erdogan, F. (1978), "Mixed boundary value problems in mechanics", In: Nemat-Nasser, S. Mechanics Today, Pergamon Press, New York
3 Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/SEM.2015.54.4.607.   DOI
4 Oner, E., Sengul Sabano, B., Uzun Yaylaci, E., Adiyaman, G., Yaylaci, M. and Birinci, A. (2022), "On the plane receding contact between two functionally graded layers using computational", finite element and artificial neural network methods", J. Appl. Math. Mech., 102(2). https://doi.org/10.1002/zamm.202100287.   DOI
5 Sarfarazi, V. and Haeri, H. (2016), "A review of experimental and numerical investigations about crack propagation", Comput. Concr., 18(2), 235-266. https://doi.org/10.12989/cac.2016.18.2.235.   DOI
6 Sarfarazi, V. and Haeri, H. (2018), "Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D)", Struct. Eng. Mech., 68(5), 537-547. https://doi.org/10.12989/sem.2018.68.5.537.   DOI
7 Uzun Yaylaci, E., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concr., 25(6), 551-563. https://doi.org/10.12989/CAC.2020.25.6.551.   DOI
8 Wakjira, T.G., Al-Hamrani, A., Ebead, U. and Alnahhal, W. (2022), "Shear capacity prediction of FRP-RC beams using single and ensenble ExPlainable Machine learning models", Compos. Struct., 287. https://doi.org/10.1016/j.compstruct.2022.115381.   DOI
9 Ainsworth, M. (1999), "Identification and a posteriori estimation of transported errors in finite element analysis", Comput. Methods Appl. Mech. Eng., 176(1), 3-18. https://doi.org/10.1016/S0045-7825(98)00327-2.   DOI
10 Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/SEM.2015.54.1.069.   DOI
11 Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2020), "Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones", Aerosp. Sci. Technol., 107, 106259. https://doi.org/10.1016/j.ast.2020.106259.   DOI
12 Javani, R., Bidgoli, M.R. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-426. https://doi.org/10.12989/SCS.2019.31.4.419.   DOI
13 Fu, J., Haeri, H., Sarfarazi, V., Asgari, K., Ebneabbasi, P., Fatehi Marji, M. and Guo, M. (2021), "Extended finite element method simulation and experimental test on failure behavior of defects under uniaxial compression", Mech. Adv. Mater. Struct., 1-16. https://doi.org/10.1080/15376494.2021.1989730.   DOI
14 Haeri, H. and Sarfarazi, V. (2016), "Numerical simulation of tensile failure of concrete using particle flow code (PFC) ", Comput. Concr., 18(1), 53-68. https://doi.org/10.12989/cac.2016.18.1.039.   DOI
15 Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., 6(4), 299-321. https://doi.org/10.12989/ANR.2018.6.4.299.   DOI
16 Kahya, V. (1997), Frictionless Contact Problem Betwwen an Elastic Layer Bondedto a Rigid Support and a Rigid Stamp, Karadeniz Technical University, Master Thesis, Graduate School of Natural and Applied Sciences, Trabzon, Turkey.
17 Li, X. and Mi, C. (2019), "Effects of surface tension and Steigmann-Ogden surface elasticity on Hertzian contact properties", Int. J. Eng. Sci., 145, 103165. https://doi.org/10.1016/j.ijengsci.2019.103165.   DOI
18 Yaylaci, M., Oner, E. and Birinci, A. (2014), "Comparison between Analytical and ANSYS Calculations for a Receding Contact Problem", J. Eng. Mech., 140(9), 04014070. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000781.   DOI
19 Li, X., Jiang, L. and Mi, C. (2019), "Flamant solution of a halfplane with surface flexural resistibility and its applications to nanocontact mechanics", Math. Mech. Solids, 25(3), 664-681. https://doi.org/10.1177/1081286519887205.   DOI
20 Yaylaci, M. Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.775.   DOI
21 Liu, Z., Yan, J. and Mi, C. (2018), "On the receding contact between a two-layer inhomogeneous laminate and a half-plane", Struct. Eng. Mech., 66(3), 329-341. https://doi.org/10.12989/sem.2018.66.3.329.   DOI
22 Payne, N. and Pochiraju, K. (2019), "Methodologies for constitutive model parameter identification for strain locking materials", Mech. Mater., 134, 30-37. https://doi.org/10.1016/j.mechmat.2019.04.004.   DOI
23 Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concr., 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.   DOI
24 Taherifar, R., Zareei, S.A., Bidgoli, M.R. and Kolahchi, R. (2020), "Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory", Steel Compos. Struct., 37(1), 99-115. https://doi.org/10.12989/scs.2020.37.1.099.   DOI
25 Yan, J. and Mi, C. (2018), "On the receding contact between a homogeneous elastic layer and a half-plane substrate coated with FGMs", Int. J. Comput. Methods, 15(1), 1-21. https://doi.org/10.1142/S0219876218440085.   DOI
26 Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.   DOI
27 Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concr., 27(3), 199-210. https://doi.org/10.12989/CAC.2021.27.3.199.   DOI
28 Cao, R., Li, L., Li, X. and Mi, C. (2021), "On the frictional receding contact between a graded layer and an orthotropic substrate indented by a rigid flat-ended stamp", Mech. Mater., 158, 103847. https://doi.org/10.1016/j.mechmat.2021.103847.   DOI
29 Bouderba, B. (2018), "Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory", Steel Compos. Struct., 27(3), 311-325.https://doi.org/10.12989/SCS.2018.27.3.311.   DOI
30 Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A., and Mahmoud, S.R. (2019), "The effect of parameters of visco- Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178.https://doi.org/10.12989/GAE.2019.18.2.161.   DOI
31 Haeri, H., Sarfarazi, V., Zhu, Z., Hedayat, A., Nezamabadi, M.F. and Karbala, M. (2018), "Simulation of crack initiation and propagation in three point bending test using PFC2D", Struct. Eng. Mech, 66(4), 453-463. https://doi.org/10.12989/sem.2018.66.4.453.   DOI
32 Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2021), "Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory", Eur. J. Mech. A Solids, 86, 104169. https://doi.org/10.1016/j.euromechsol.2020.104169.   DOI
33 ANSYS (2013), Mechanical APDL, ANSYS Contact Technology Guide, Ansys, Inc., Canonsburg, Pennsylvania, U.S.A.
34 Azizkhani, M., Kadkhodapour, J., Anaraki, A.P., Hadavand, B.S. and Kolahchi, R. (2020), "Study of body movement monitoring utilizing nano-composite strain sensors contaning Carbon nanotubes and silicone rubber", Steel Compos. Struct., 35(6), 779-788. https://doi.org/10.12989/scs.2020.35.6.779.   DOI
35 Cao, R. and Mi, C. (2021), "On the receding contact between a graded and a homogeneous layer due to a flat-ended indenter", Math. Mech. Solids, 27(5), 775-793. https://doi.org/10.1177/10812865211043152.   DOI
36 Farokhian, A. and Kolahchi, R, (2020), "Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs", Struct. Eng. Mech., 73(5), 555-563. https://doi.org/10.12989/sem.2020.73.5.555.   DOI
37 Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849.https://doi.org/10.1016/j.compstruct.2012.09.001.   DOI
38 Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels". Eur. J. Mech. A Solids, 82. https://doi.org/10.1016/j.euromechsol.2020.104010.   DOI
39 Yaylaci, M., Yayli, M., Yaylaci, E.U., Olmez, H. and Birinci, A. (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/SEM.2021.78.5.585.   DOI
40 Yaylaci, M., Eyuboglu, A., Adiyaman, G., Yaylaci, E.U., Oner, E. and Birinci, A. (2021), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.   DOI
41 Lazzari, P.M., Filho, A.C., Lazzari, B.M. and Pacheco, A.R. (2017), "Structural analysis of a prestressed segmented girder using contact elements in ANSYS", Comput. Concr., 20(3), 319-327.https://doi.org/10.12989/CAC.2017.20.3.319.   DOI
42 Keshtegar, B., Bagheri, M., Meng, D., Kolahchi, R. and Trung, N.T. (2021), "Fuzzy reliability analysis of nanocomposite ZnO beams using hybrid analytical-intelligent method", Eng. Comput., 37(4), 2575-2590. https://doi.org/10.1007/s00366- 020-00965-5.   DOI
43 Kolahchi, R., Zhu, S.P., Keshtegar, B. and Trung, N.T. (2020), "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656. https://doi.org/10.1016/j.ast.2019.105656.   DOI
44 Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.   DOI
45 Kolahchi, R., Tian, K., Keshtegar, B., Li, Z., Trung, N.T. and Thai, D.K. (2022), "AK-GWO: A novel hybrid optimization method for accurate optimum hierarchical stiffened shells", Eng. Comput., 38, 29-41.https://doi.org/10.1007/s00366-020-01124-6.   DOI
46 Krenk, S. (1975), "On quadrature formulas for singular integral equations of the first and the second kind", Q. Appl. Math., 33, 225-232.   DOI
47 Lezgy-Nazargah, M. and Meshkani, Z. (2018), "An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations", Struct. Eng. Mech., 66(5), 665-676. https://doi.org/10.12989/SEM.2018.66.5.665.   DOI