Browse > Article
http://dx.doi.org/10.12989/scs.2022.43.5.603

Vibrational behavior of exponentially graded joined conical-conical shells  

Rezaiee-Pajand, Mohammad (Department of Civil Engineering, Ferdowsi University of Mashhad)
Sobhani, Emad (Department of Civil Engineering, Ferdowsi University of Mashhad)
Masoodi, Amir R. (Department of Civil Engineering, Ferdowsi University of Mashhad)
Publication Information
Steel and Composite Structures / v.43, no.5, 2022 , pp. 603-623 More about this Journal
Abstract
This article is dedicated to predict the natural frequencies of joined conical shell structures made of Functionally Graded Material (FGM). The structure includes two conical segments. The equivalent material properties are found by using the rule of mixture based on Voigt model. In addition, three well-known patterns are employed for distribution of material properties throughout the thickness of the structure. The main objective of the present research is to propose a novel exponential pattern and obtain the related equivalent material properties. Furthermore, the Donnell type shell theory is used to obtain the governing equations of motion. Note that these equations are obtained by employing First-order Shear Deformation Theory (FSDT). In order to discretize the governing system of differential equations, well-known and efficient semi-analytical scheme, namely Generalized Differential Quadrature Method (GDQM), is utilized. Different boundary conditions are considered for various types of single and joined conical shell structures. Moreover, an applicable modification is considered for the continuity conditions at intersection position. In the first step, the proposed formulation is verified by solving some well-known benchmark problems. Besides, some new numerical examples are analyzed to show the accuracy and high capability of the suggested technique. Additionally, several geometric and material parameters are studied numerically.
Keywords
Free vibration; joined conical-conical shell; FGM; modified GDQM; continuity conditions;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Artioli, E. and E. Viola (2005), "Static analysis of sheardeformable shells of revolution via GDQ method", Struct. Eng. Mech., 19(4), 459-475. https://doi.org/10.12989/sem.2005.19.4.459.   DOI
2 Bagheri, H., Kiani, Y. and Eslami, M. (2018), "Free vibration of joined conical-cylindrical-conical shells", Acta Mechanica, 229(7), 2751-2764. https://doi.org/10.1007/s00707-018-2133-3.   DOI
3 Bagheri, H., Kiani, Y. and Eslami, M.R. (2017), "Free vibration of joined conical-conical shells", Thin-Walled Struct., 120, 446-457, https://doi.org/10.1016/j.tws.2017.06.032.   DOI
4 Caresta, M. and Kessissoglou, N.J. (2010), "Free vibrational characteristics of isotropic coupled cylindrical-conical shells", J. Sound Vib. 329(6), 733-751. https://doi.org/10.1016/j.jsv.2009.10.003.   DOI
5 Civalek, O. (2006), "An efficient method for free vibration analysis of rotating truncated conical shells", Int. J. Pressure Vessels Piping, 83(1), 1-12. https://doi.org/10.1016/j.ijpvp.2005.10.005.   DOI
6 Do, Q.C., Pham, D.N., Vu, D.Q., Vu, T.T.A. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., 31.
7 Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018), "Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory" Aeros. Sci. Technol., 78, 260-270. https://doi.org/10.1016/j.ast.2018.04.030.   DOI
8 Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2021), "Semi-analytical vibrational analysis of functionally graded carbon nanotubes coupled conical-conical shells", Thin-Wall. Struct., 159, 107272. https://doi.org/10.1016/j.tws.2020.107272.   DOI
9 Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeitaba, S.B. (2019), "Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM", Steel Compos. Struct., 33(2), 307-318. https://doi.org/10.12989/scs.2019.33.2.307.   DOI
10 Saunders, H., Wisniewski, E. and Paslay, P.R. (1960), "Vibrations of conical shells", J. Acoust. Soc. Amer., 32(6), 765-772. https://doi.org/10.1121/1.1908207.   DOI
11 Shu, C. (1996), "An efficient approach for free vibration analysis of conical shells", Int. J. Mech. Sci., 38(8), 935-949. https://doi.org/10.1016/0020-7403(95)00096-8.   DOI
12 Shu, C. and Du, H. (1997), "A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates", Int. J. Solids Struct., 34(7), 837-846. https://doi.org/10.1016/S0020-7683(96)00056-X.   DOI
13 Sobhani, E., Arbabian, A. Civalek, O.and Avcar, M. (2021), "The free vibration analysis of hybrid porous nanocomposite joined hemispherical-cylindrical-conical shells", Eng. Comput., 1-28. https://doi.org/10.1007/s00366-021-01453-0.   DOI
14 Sobhani, E. and Masoodi, A.R. (2021), "Differential quadrature technique for frequencies of the coupled circular arch-arch beam bridge system", Mech. Adv. Mater. Struct., 1-12. https://doi.org/10.1080/15376494.2021.2023920.   DOI
15 Sobhani, E. and Masoodi, A.R. (2021), "Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nanocomposites paraboloidal and hyperboloidal shells based on multiscale approaches", Aeros. Sci. Technol., 119, 107111.   DOI
16 Kamat, S., Ganapathi, M. and Patel, B. (2001), "Analysis of parametrically excited laminated composite joined conical-cylindrical shells", Comput. Struct., 79(1), 65-76. https://doi.org/10.1016/S0045-7949(00)00111-5.   DOI
17 Lam, K., Li, H., Ng, T. and Chua, C. (2002), "Generalized differential quadrature method for the free vibration of truncated conical panels", J. Sound Vib., 251(2), 329-348. https://doi.org/10.1006/jsvi.2001.3993.   DOI
18 Liew, K.M., Ng, T.Y. and Zhao, X. (2005), "Free vibration analysis of conical shells via the element-free kp-Ritz method", J. Sound Vib., 281(3-5), 627-645. https://doi.org/10.1016/j.jsv.2004.01.005.   DOI
19 Heidari Soureshjani, A., Talebitooti, R. and Talebitooti, M. (2020), "A semi-analytical approach on the effect of external lateral pressure on free vibration of joined sandwich aerospace composite conical-conical shells", Aeros. Sci. Technol., 99, 105559. https://doi.org/10.1016/j.ast.2019.105559.   DOI
20 Irie, T., Yamada, G. and Muramoto, Y. (1984), "Free vibration of joined conical-cylindrical shells", J. Sound Vib., 95(1), 31-39. https://doi.org/10.1016/0022-460X(84)90256-6.   DOI
21 Lair, J., Hui, D., Sofiyev, A.H., Gribniak, V. and Turan, F. (2019), "On the parametric instability of multilayered conical shells using the FOSDT", Steel Compos. Struct., 31(3), 277-290. https://doi.org/10.12989/scs.2019.31.3.277.   DOI
22 Lam, K. and Hua, L. (2000), "Influence of initial pressure on frequency characteristics of a rotating truncated circular conical shell", Int. J. Mech. Sci., 42(2), 213-236. https://doi.org/10.1016/S0020-7403(98)00125-8.   DOI
23 Efraim, E. and Eisenberger, M. (2006), "Exact vibration frequencies of segmented axisymmetric shells", Thin-Walled Struct., 44(3), 281-289. https://doi.org/10.1016/j.tws.2006.03.006.   DOI
24 Penzes, L.E. and Kraus, H. (1972), "Free vibration of prestressed cylindrical shells having arbitrary homogeneous boundary conditions", AIAA, J., 10(10), 1309-1313. https://doi.org/10.2514/3.6605.   DOI
25 Lee, Y.S., Yang, M.S., Kim, H.S. and Kim, J.H. (2002), "A study on the free vibration of the joined cylindrical-spherical shell structures", Comput. Struct., 80(27-30), 2405-2414. https://doi.org/10.1016/S0045-7949(02)00243-2.   DOI
26 Li, H., Cong, G., Li, L., Pang, F. and Lang, J. (2019), "A semi analytical solution for free vibration analysis of combined spherical and cylindrical shells with non-uniform thickness based on Ritz method", Thin-Walled Struct., 145, 106443. https://doi.org/10.1016/j.tws.2019.106443.   DOI
27 Loy, C., Lam, K. and Shu, C. (1997), "Analysis of cylindrical shells using generalized differential quadrature", Shock Vib., 4(3), 193-198. https://doi.org/10.3233/SAV-1997-4305.   DOI
28 Aris, H. and H. Ahmadi (2020), "Nonlinear vibration analysis of FGM truncated conical shells subjected to harmonic excitation in thermal environment", Mech. Res. Commun., 104, 103499. https://doi.org/10.1016/j.mechrescom.2020.103499.   DOI
29 Bagheri, H., Kiani, Y. and Eslami, M.R. (2017), "Free vibration of conical shells with intermediate ring support", Aeros. Sci. Technol., 69, 321-332, https://doi.org/10.1016/j.ast.2017.06.037.   DOI
30 Chen, J.C. and Babcock, C.D. (1975), "Nonlinear vibration of cylindrical shells", AiAA J., 13(7), 868-876. https://doi.org/10.2514/3.60462.   DOI
31 Wu, S., Qu, Y. and Hua, H. (2013), "Free vibration of laminated orthotropic conical shell on Pasternak foundation by a domain decomposition method", J. Compos. Mater., 49(1), 35-52. https://doi.org/10.1177/0021998313514259.   DOI
32 Irie, T., Yamada, G. and Kaneko, Y. (1982), "Free vibration of a conical shell with variable thickness", J. Sound Vib., 82(1), 83-94.   DOI
33 Kerboua, Y. and Lakis, A.A. (2016), "Numerical model to analyze the aerodynamic behavior of a combined conical-cylindrical shell", Aeros. Sci. Technol., 58, 601-617. https://doi.org/10.1016/j.ast.2016.09.019.   DOI
34 Mehditabar, A., Alashti, R.A. and Pashaei, M. (2014), "Magnetothermo-elastic analysis of a functionally graded conical shell", Steel Compos. Struct., 16(1), 77-96. https://doi.org/10.12989/scs.2014.16.1.077.   DOI
35 Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2019), "Nonlinear analysis of FG-sandwich plates and shells", Aeros. Sci. Technol., 87, 178-189. https://doi.org/10.1016/j.ast.2019.02.017.   DOI
36 Rahmani, M., Mohammadi, Y., Kakavand, F. and Raeisifard, H. (2020), "Vibration analysis of different types of porous FG conical sandwich shells in various thermal surroundings", J. Appl. Comput. Mech., 6(3), 416-432. https://dx.doi.org/10.22055/jacm.2019.29442.1598.   DOI
37 Rezaiee-Pajand, M., Arabi, E. and. Masoodi, A.R. (2018), "A triangular shell element for geometrically nonlinear analysis", Acta Mech., 229(1), 323-342. https://doi.org/10.2514/3.6605.   DOI
38 Rezaiee-Pajand, M. and Masoodi, A.R. (2019), "Shell instability analysis by using mixed interpolation", J. Brazil. Soc. Mech. Sci. Eng., 41(10), 1-18. https://doi.org/10.1007/s40430-019-1937-y.   DOI
39 Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2020), "Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method", Aeros. Sci. Technol., 105, 105998. https://doi.org/10.1016/j.ast.2020.105998.   DOI
40 Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Meth. Appl. Mech. Eng., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.   DOI
41 Zielnica, J. (2012), "Buckling and stability of elastic-plastic sandwich conical shells", Steel Compos. Struct., 13(2), 157-169. https://doi.org/10.12989/scs.2012.13.2.157.   DOI
42 Rezaiee-Pajand, M. and Masoodi, A.R. (2020), "Hygro-thermoelastic nonlinear analysis of functionally graded porous composite thin and moderately thick shallow panels", Mech. Adv. Mater. Struct., 1-19. https://doi.org/10.1080/15376494.2020.1780524.   DOI
43 Tornabene, F. and Viola, E. (2009), "Free vibration analysis of functionally graded panels and shells of revolution", Meccanica, 44(3), 255-281. https://doi.org/10.1007/s11012-008-9167-x.   DOI
44 Viola, E. and Artioli, E. (2004), "The GDQ method for the harmonic dynamic analysis of rotational shell structural elements", Struct. Eng. Mech., 17(6), 789-818. https://doi.org/10.12989/scs.2013.14.4.397.   DOI
45 Xie, K., Chen, M. and Li, Z. (2017), "An analytic method for free and forced vibration analysis of stepped conical shells with arbitrary boundary conditions", Thin-Wall. Struct., 111, 126-137. https://doi.org/10.1016/j.tws.2016.11.017.   DOI
46 Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/scs.2020.35.2.397.   DOI
47 Zhao, X. and Liew, K.M. (2011), "Free vibration analysis of functionally graded conical shell panels by a meshless method", Compos. Struct., 93(2), 649-664. https://doi.org/10.1016/j.compstruct.2010.08.014.   DOI
48 Sobhani, E. and Masoodi, A.R. (2022), "A comprehensive shell approach for vibration of porous nano-enriched polymer composite coupled spheroidal-cylindrical shells", Compos. Struct., 115464. https://doi.org/10.1016/j.compstruct.2022.115464.   DOI
49 Sobhani, E. and Masoodi, A.R. (2022), "On the circumferential wave responses of connected elliptical-cylindrical shell-like submerged structures strengthened by nano-reinforcer", Ocean Eng., 247, 110718. https://doi.org/10.1016/j.oceaneng.2022.110718.   DOI
50 Sobhani, E., Masoodi, A.R. and. Ahmadi-Pari, A.R (2021), "Vibration of FG-CNT and FG-GNP sandwich composite coupled Conical-Cylindrical-Conical shell," Compos. Struct., 273, 114281. https://doi.org/10.1016/j.compstruct.2021.114281.   DOI
51 Sofiyev, A. and N. Kuruoglu (2015), "On a problem of the vibration of functionally graded conical shells with mixed boundary conditions", Compos. Part B: Eng., 70, 122-130. https://doi.org/10.1016/j.compositesb.2014.10.047.   DOI
52 Sobhani, E., Masoodi, A.R., Civalek, O. and Ahmadi-Pari, A.R. (2022), "Agglomerated impact of CNT vs. GNP nanofillers on hybridization of polymer matrix for vibration of coupled hemispherical-conical-conical shells", Aeros. Sci. Technol., 120, 107257. https://doi.org/10.1016/j.ast.2021.107257.   DOI
53 Sobhani, E., Masoodi, A.R. Civalek, O. and Avcar, M. (2022), "Natural frequency analysis of FG-GOP/polymer nanocomposite spheroid and ellipsoid doubly curved shells reinforced by transversely-isotropic carbon fibers", Eng. Anal. Bound. Elements, 138, 369-389. https://doi.org/10.1016/j.enganabound.2022.03.009.   DOI
54 Sobhani, E., Moradi-Dastjerdi, R., Behdinan, K., Masoodi, A.R. and Ahmadi-Pari, A.R. (2022), "Multifunctional trace of various reinforcements on vibrations of three-phase nanocomposite combined hemispherical-cylindrical shells", Compos. Struct., 279, 114798. https://doi.org/10.1016/j.compstruct.2021.114798.   DOI
55 Sofiyev, A.H., Zerin, Z., Allahverdiev, B.P., Hui, D., Turan, F. and Erdem, H. (2017), "The dynamic instability of FG orthotropic conical shells within the SDT", Steel Compos. Struct., 25(5), 581-591. https://doi.org/10.12989/scs.2017.25.5.581.   DOI
56 Srinivasan, R. and Krishnan, P. (1987), "Free vibration of conical shell panels", J. Sound Vib., 117(1), 153-160. https://doi.org/10.1016/0022-460X(87)90441-X.   DOI
57 Srivastava, V., Dwivedi, S. and Mukhopadhyay, A. (2022), "Parametric investigation of vibration of stiffened structural steel plates using finite element analysis and grey relational analysis", Reports Mech. Eng., 3(1), 108-115. https://doi.org/10.31181/rme2001290122s.   DOI
58 Topal, U. (2013), "Pareto optimum design of laminated composite truncated circular conical shells," Steel Compos. Struct., 14(4), 397-408. https://doi.org/10.12989/scs.2013.14.4.397.   DOI
59 Tang, Q., Li, C., She, H. and Wen, B. (2019), "Nonlinear response analysis of bolted joined cylindrical-cylindrical shell with general boundary condition", J. Sound Vib., 443, 788-803. https://doi.org/10.1016/j.jsv.2018.12.003.   DOI
60 Ton-That, H.L. (2021), "A new C0 third-order shear deformation theory for the nonlinear free vibration analysis of stiffened functionally graded plates", Facta Universitatis, Series: Mechanical Engineering, 19(2), 285-305.   DOI