Browse > Article
http://dx.doi.org/10.12989/scs.2021.41.4.609

Enhanced thermal and mechanical properties of epoxy composites at ultra-low loading of functionalized MoS2 nanosheets  

Riaz, Shahina (Department of Chemistry, Inha University)
Rhee, Kyong Y. (Department of Mechanical Engineering, College of Engineering, Kyung Hee University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Steel and Composite Structures / v.41, no.4, 2021 , pp. 609-624 More about this Journal
Abstract
In this study, single-step branched polyethyleneimine (PEI)-assisted exfoliation of molybdenum sulfide nanosheets (MoS2-PEI) was carried out. These functionalized MoS2-PEI nanosheets were employed as toughening agents for epoxy composites. The loadings of nanosheets were kept lower than 1 wt.%. The mechanical and thermal properties, and interfacial interactions of epoxy composites were investigated. The epoxy composites have shown ~67% and ~101% enhancements in fracture toughness (KIC) in fracture energy (GIC), respectively, at nanosheets loadings as small as 0.09 wt.% (EP/MoS2-PEI-0.09), KIC has shown a direct linear relationship with the surface free energy and is highest at 52 mJ.m-2 for the EP/MoS2-PEI-0.09 composite. However, the surface free energy values of EP/MoS2-PEI-0.16 and EP/MoS2-PEI-1 composites decreased to 48 mJ.m-2 and 45 mJ.m-2. The overall flexural modulus (E) and strength (σ) were not highly responsive to the addition of the MoS2-PEI nanosheets. Furthermore, the thermal stability and thermomechanical properties of the epoxy composites improved significantly. The optimum MoS2-PEI nanosheet loading was observed to be 0.09 wt.%, beyond this a gradual decrease in thermal stability and mechanical properties was observed. The significant improvement in thermal and mechanical properties of the epoxy composites could be accredited to the good interfacial interaction between the MoS2-PEInanosheets and epoxy matrix at the interface and the inherent strength, high aspect ratio, and excellent barrier effect of PEI molecules.
Keywords
fracture toughness; polymer matrix composites; surface free energy; thermomechanical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sahu, M., Narashimhan, L., Prakash, O. and Raichur, A.M. (2017), "Noncovalently functionalized tungsten disulfide nanosheets for enhanced mechanical and thermal properties of epoxy nanocomposites", ACS Appl. Mater. Interfaces., 9(16), 14347-14357. https://doi.org/10.1021/acsami.7b01608.   DOI
2 Karimi, B. and Ramezanzadeh, B. (2017), "A comparative study on the effects of ultrathin luminescent graphene oxide quantum dot (GOQD) and graphene oxide (GO) nanosheets on the interfacial interactions and mechanical properties of an epoxy composite", J. Colloid Interface Sci., 493, 62-76. https://doi.org/10.1016/j.jcis.2017.01.013.   DOI
3 Kim, K.W., Kim, D.K., Kim, B.S., An, K.H., Park, S.-., Rhee, K.Y. and Kim, B.J. (2017), "Cure behaviors and mechanical properties of carbon fiber-reinforced nylon6/epoxy blended matrix composites", Compos. Part B-Eng., 112, 15-21. https://doi.org/10.1016/j.compositesb.2016.12.009.   DOI
4 Kim, S.H., Heo, Y.-J., Park, M., Min, B.-G., Rhee, K.Y. and Park, S.-J. (2018), "Effect of hydrophilic graphite flake on thermal conductivity and fracture toughness of basalt fibers/epoxy composites", Compos. Part B-Eng., 153, 9-16. https://doi.org/10.1016/j.compositesb.2018.07.022.   DOI
5 Li, D. and Neumann, A. (1993), "Equilibrium of capillary systems with an elastic liquid-vapor interface", Langmuir, 9(1), 50-54. https://doi.org/10.1021/la00025a014.   DOI
6 Liu, N., Yang, L., Wang, S., Zhong, Z., He, S., Yang, X., Gao, Q. and Tang, Y. (2015), "Ultrathin MoS2 nanosheets growing within an in-situ-formed template as efficient electrocatalysts for hydrogen evolution", J. Power Sources., 275, 588-594. https://doi.org/10.1016/j.jpowsour.2014.11.039.   DOI
7 Naffakh, M., Diez-Pascual, A.M., Marco, C., Ellis, G.J. and Gomez-Fatou, M.A. (2013), "Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites", Prog. Polym. Sci., 38(8), 1163-1231. https://doi.org/10.1016/j.progpolymsci.2013.04.001.   DOI
8 Moloney, A., Kausch, H. and Stieger, H. (1983), "The fracture of particulate-filled epoxide resins", J. Mater. Sci., 18(1), 208-216. https://doi.org/10.1007/BF00543827.   DOI
9 Park, J.M., Kim, D.S., Kong, J.W., Kim, M., Kim, W. and Park, I.S. (2002), "Interfacial adhesion and microfailure modes of electrodeposited carbon fiber/epoxy-PEI composites by microdroplet and surface wettability tests", J. Colloid Interface Sci., 249(1), 62-77. https://doi.org/10.1006/jcis.2002.8252.   DOI
10 Pant, B., Park, M. and Park, S.J. (2019), "MoS2/CdS/TiO2 ternary composite incorporated into carbon nanofibers for the removal of organic pollutants from water", Inorg. Chem. Commun., 102, 113-119. https://doi.org/10.1016/j.inoche.2019.02.022.   DOI
11 Park, S.J., Seo, M.K. and Nah, C. (2005), "Influence of surface characteristics of carbon blacks on cure and mechanical behaviors of rubber matrix compoundings", J. Colloid Interface Sci., 291(1), 229-235. https://doi.org/10.1016/j.jcis.2005.04.103.   DOI
12 Park, Y.T., Qian, Y., Chan, C., Suh, T., Nejhad, M.G., Macosko, C.W. and Stein, A. (2015), "Epoxy toughening with low graphene loading", Adv. Funct. Mater., 25(4), 575-585. https://doi.org/10.1002/adfm.201402553.   DOI
13 Pekbey, Y., Aslantas, K. and Yumak, N. (2017), "Ballistic impact response of Kevlar Composites with filled epoxy matrix", Steel Compos. Struct., 22(4), 191-200. https://doi.org/10.12989/scs.2017.24.2.191.   DOI
14 Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2010), "Fracture and fatigue in graphene nanocomposites", Small, 6(2), 179-183. https://doi.org/10.1002/smll.200901480.   DOI
15 Ribeiro, H., Trigueiro, J.P.C., Lopes, M.C., Pedrotti, J.J., Woellner, C.F., Silva, W.M., Silva, G.G. and Ajayan, P.M. (2018), "Enhanced thermal conductivity and mechanical properties of hybrid MoS2/h-BN polyurethane nanocomposites", J. Appl. Polym. Sci., 135(30), 46560.   DOI
16 Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano., 3(12), 3884-3890. https://doi.org/10.1002/smll.200901480.   DOI
17 Ozcan, C. and Hasirci, N. (2008), "Evaluation of surface free energy for PMMA films", J. Appl. Polym. Sci., 108(1), 438-446. https://doi.org/10.1002/app.27687.   DOI
18 Zeng, K., Wang, L. and Zheng, S. (2011), "Nanostructures and surface hydrophobicity of epoxy thermosets containing hepta (3, 3, 3-trifluropropyl) polyhedral oligomeric silsesquioxane-capped poly (hydroxyether of bisphenol A) telechelics", J. Colloid Interface Sci., 363(1), 250-260. https://doi.org/10.1016/j.jcis.2011.06.001.   DOI
19 Riaz, S. and Park, S.J. (2020), "Effective reinforcement of melamine-functionalized WS2 nanosheets in epoxy nanocomposites at low loading via enhanced interfacial interaction", Macromol. Res., 28(12), 1116-1126. https://doi.org/10.1016/j.compositesa.2021.106419.   DOI
20 Riaz, S. and Park, S.J. (2021), "A comparative study on nanoinclusion effect of MoS2 nanosheets and MoS2 quantum dots on fracture toughness and interfacial properties of epoxy composites", Compos. Part A Appl. Sci. Manuf., 146, 106419. https://doi.org/10.1016/j.compositesa.2021.106419.   DOI
21 Saidi, M., Pasc, A., El Moujahid, C., Canilho, N., Badawi, M., Delgado-Sanchez, C., Celzard, A., Fierro, V., Peignier, R. and Kouitat-Njiwa, R. (2019), "Improved tribological properties, thermal and colloidal stability of poly-α-olefins based lubricants with hydrophobic MoS2 submicron additives", J. Colloid Interface Sci., 562, 91-101. https://doi.org/10.1016/j.jcis.2019.12.007.   DOI
22 Sarikaya, E., Callioglu, H. and Demirel, H. (2019), "Production of epoxy composites reinforced by different natural fibers and their mechanical properties", Compos. Part B-Eng., 167, 461-466. https://doi.org/10.1016/j.compositesb.2019.03.020.   DOI
23 Patterson, J.R., Catledge, S.A., Vohra, Y.K., Akella, J. and Weir, S.T. (2000), "Electrical and mechanical properties of C 70 fullerene and graphite under high pressures studied using designer diamond anvils", Phys. Rev. Lett., 85(25), 5364. https://doi.org/10.1103/PhysRevLett.85.5364.   DOI
24 Satheeshkumar, E., Bandyopadhyay, A., Sreedhara, M., Pati, S.K., Rao, C. and Yoshimura, M. (2017), "One-step simultaneous exfoliation and covalent functionalization of MoS2 by amino acid induced solution processes", Chem. Nano Mat., 3(3), 172-177. https://doi.org/10.1002/cnma.201600363.   DOI
25 Shimizu, R.N. and Demarquette, N.R. (2000), "Evaluation of surface energy of solid polymers using different models", J. Appl. Polym. Sci., 76(12), 1831-1845. https://doi.org/10.1002/(SICI)1097-4628(20000620)76:12%3C1831::AID-APP14%3E3.0.CO;2-Q.   DOI
26 Ma, L., Meng, L., Wu, G., Wang, Y., Zhao, M., Zhang, C. and Huang, Y. (2015), "Improving the interfacial properties of carbon fiber-reinforced epoxy composites by grafting of branched polyethyleneimine on carbon fiber surface in supercritical methanol", Compos. Sci. Technol., 114, 64-71. https://doi.org/10.1016/j.compscitech.2015.04.011.   DOI
27 Saud, P.S., Pant, B., Ojha, G.P., Kim, D.U., Kuk, Y.S., Park, S.J., Park, M. and Kim, H.Y. (2017), "One-pot synthesis of Ag3PO4/MoS2 nanocomposite with highly efficient photocatalytic activity", J. Environ. Chem. Eng., 5(6), 5521-5527. https://doi.org/10.1016/j.jece.2017.10.040.   DOI
28 Guo, H., Jiao, T., Zhang, Q., Guo, W., Peng, Q. and Yan, X. (2015), "Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment", Nanoscale Res. lett., 10(1), 272. https://doi.org/10.1186/s11671-015-0931-2.   DOI
29 Eksik, O., Gao, J., Shojaee, S.A., Thomas, A., Chow, P., Bartolucci, S.F., Lucca, D.A. and Koratkar, N. (2014), "Epoxy nanocomposites with two-dimensional transition metal dichalcogenide additives", Acs Nano., 8(5), 5282-5289. https://doi.org/10.1021/nn5014098.   DOI
30 Feng, X., Xing, W., Yang, H., Yuan, B., Song, L., Hu, Y. and Liew, K.M. (2015), "High-performance poly (ethylene oxide)/molybdenum disulfide nanocomposite films: reinforcement of properties based on the gradient interface effect", ACS Appl. Mater. Interfaces., 7(24), 13164-13173. https://doi.org/10.1021/acsami.5b02312.   DOI
31 Hsieh, T., Kinloch, A., Masania, K., Lee, J.S., Taylor, A. and Sprenger, S. (2010), "The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles", J. Mater. Sci., 45(5), 1193-1210. https://doi.org/10.1007/s10853-009-4064-9.   DOI
32 Baker, R.W. (2012), Membrane technology and applications, John Wiley & Sons.
33 Islam, M.E., Rahman, M.M., Hosur, M. and Jeelani, S. (2015), "Thermal stability and kinetics analysis of epoxy composites modified with reactive polyol diluent and multiwalled carbon nanotubes", J. Appl. Polym. Sci., 132(9). https://doi.org/10.1002/app.41558.   DOI
34 Kang, W.S., Rhee, K.Y. and Park, S.J. (2017), "Influence of surface energetics of graphene oxide on fracture toughness of epoxy nanocomposites", Compos. Part B-Eng., 114, 175-183. https://doi.org/10.1016/j.compositesb.2017.01.032.   DOI
35 Abbasi, H., Antunes, M. and Velasco, J.I. (2019), "Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding", Prog. Mater Sci., 103, 319-373. https://doi.org/10.1016/j.pmatsci.2019.02.003.   DOI
36 Abdullah, M., Low, G.K. and Matthews, R.W. (1990), "Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide", J. Phys. Chem., 94(17), 6820-6825. https://doi.org/10.1021/j100380a051.   DOI
37 Lee, W.H., Loo, C.Y., Nomura, C.T. and Sudesh, K. (2008), "Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors", Bioresour. Technol., 99(15), 6844-6851. https://doi.org/10.1016/j.biortech.2008.01.051.   DOI
38 Li, D. and Neumann, A. (1992), "Contact angles on hydrophobic solid surfaces and their interpretation", J. Colloid Interface Sci., 148(1), 190-200. https://doi.org/10.1016/0021-9797(92)90127-8.   DOI
39 Ahmadi-Moghadam, B., Sharafimasooleh, M., Shadlou, S. and Taheri, F. (2015), "Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites", Mater. Des., 66, 142-149. https://doi.org/10.1016/j.matdes.2014.10.047.   DOI
40 Arenal, R., Blase, X. and Loiseau, A. (2010), "Boron-nitride and boron-carbonitride nanotubes: synthesis, characterization and theory", Adv. Phy., 59(2), 101-179. https://doi.org/10.1080/00018730903562033.   DOI
41 Singh, V.K., Mishra, H., Ali, R., Umrao, S., Srivastava, R., Abraham, S., Misra, A., Singh, V.N., Mishra, H. and Tiwari, R. (2018), "In situ functionalized fluorescent WS2-QDs as sensitive and selective probe for Fe3+ and a detailed study of its fluorescence quenching", ACS Appl. Nano Mater., 2(1), 566-576. https://doi.org/10.1021/acsanm.8b02162.   DOI
42 Li, Z., Ottmann, A., Zhang, T., Sun, Q., Meyer, H.P., Vaynzof, Y., Xiang, J. and Klingeler, R. (2017), "Preparation of hierarchical C@ MoS2@ C sandwiched hollow spheres for lithium ion batteries", J. Mater. Chem. A, 5(8), 3987-3994. https://doi.org/10.1039/C6TA10439H.   DOI
43 Liu, N., Kim, P., Kim, J.H., Ye, J.H., Kim, S. and Lee, C.J. (2014), "Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation", ACS Nano., 8(7), 6902-6910. https://doi.org/10.1021/nn5016242.   DOI
44 Loh, K.P., Bao, Q., Eda, G. and Chhowalla, M. (2010), "Graphene oxide as a chemically tunable platform for optical applications", Nat. Chem., 2, 1015. https://doi.org/10.1038/nchem.907.   DOI
45 Wang, K., Chen, L., Wu, J., Toh, M.L., He, C. and Yee, A.F. (2005), "Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms", Macromolecules, 38(3), 788-800. https://doi.org/10.1021/ma048465n.   DOI
46 Yi, J., She, X., Song, Y., Mao, M., Xia, K., Xu, Y., Mo, Z., Wu, J., Xu, H. and Li, H. (2018), "Solvothermal synthesis of metallic 1T-WS2: A supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution", Chem. Eng. J., 335, 282-289. https://doi.org/10.1016/j.cej.2017.10.125.   DOI
47 Wang, X., Kalali, E.N. and Wang, D.Y. (2015), "An in situ polymerization approach for functionalized MoS2/nylon-6 nanocomposites with enhanced mechanical properties and thermal stability", J. Mater. Chem. A, 3(47), 24112-24120. https://doi.org/10.1039/C5TA06071K.   DOI
48 Wetzel, B., Rosso, P., Haupert, F. and Friedrich, K. (2006), "Epoxy nanocomposites-fracture and toughening mechanisms", Eng. Fract. Mech., 73(16), 2375-2398. https://doi.org/10.1021/ma048465n.   DOI
49 Wu, Q., Chen, S. and Liu, H. (2014), "Effect of surface chemistry of polyethyleneimine-grafted polypropylene fiber on its CO2 adsorption", RSC Adv., 4(52), 27176-27183. https://doi.org/10.1039/C4RA01232A.   DOI
50 Yim, Y.J., Bae, K.M. and Park, S.J. (2018), "Influence of Oxyfluorination on Geometrical Pull-Out Behavior of Carbon-Fiber-Reinforced Epoxy Matrix Composites", Macromol. Res., 26(9), 794-799. https://doi.org/10.1007/s13233-018-6115-z.   DOI
51 Zhao, Q., Liu, Y. and Abel, E. (2005), "Surface free energies of electroless Ni-P based composite coatings", Appl. Surf. Sci., 240(1-4), 441-451. https://doi.org/10.1016/j.apsusc.2004.07.013.   DOI
52 Yu, H., Liu, J., Wen, X., Jiang, Z., Wang, Y., Wang, L., Zheng, J., Fu, S. and Tang, T. (2011), "Charing polymer wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of epoxy resin", Polymer., 52(21), 4891-4898. https://doi.org/10.1016/j.polymer.2011.08.013.   DOI
53 Yu, J., Huang, X., Wu, C., Wu, X., Wang, G. and Jiang, P. (2012), "Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties", Polymer. 53(2), 471-480. https://doi.org/10.1016/j.polymer.2011.12.040.   DOI
54 Zhang, Y. and Park, S.J. (2017), "Enhanced interfacial interaction by grafting carboxylated-macromolecular chains on nanodiamond surfaces for epoxy-based thermosets", J. Polym. Sci., Part B: Polym. Phys., 55(24), 1890-1898. https://doi.org/10.1002/polb.24522.   DOI
55 Zhang, Y., Yang, H.M. and Park, S.J. (2018), "Synthesis and characterization of nitrogen-doped TiO2 coatings on reduced graphene oxide for enhancing the visible light photocatalytic activity", Curr. Appl. Phy., 18(2), 163-169. https://doi.org/10.1016/j.cap.2017.12.001.   DOI
56 Zhao, M., Liu, L., Zhang, B., Sun, M., Zhang, X., Zhang, X., Li, J. and Wang, L. (2018), "Epoxy composites with functionalized molybdenum disulfide nanoplatelet additives", RSC Adv., 8(61), 35170-35178. https://doi.org/10.1039/C8RA07448H.   DOI
57 Zhou, K., Liu, J., Shi, Y., Jiang, S., Wang, D., Hu, Y. and Gui, Z. (2015), "MoS2 nanolayers grown on carbon nanotubes: an advanced reinforcement for epoxy composites", ACS Appl. Mater. Interfaces., 7(11), 6070-6081. https://doi.org/10.1021/acsami.5b00762.   DOI
58 Beylergil, B., Tanoglu, M. and Aktas, E. (2019), "Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils", Steel Compos. Struct., 31(2), 113-123. https://doi.org/10.12989/scs.2019.31.2.113.   DOI
59 Banh, T.T., Luu, N.G. and Lee, D. (2021), "A non-homogeneous multi-material topology optimization approach for functionally graded structures with cracks", Compos. Struct., 273, 114230. https://doi.org/10.1016/j.compstruct.2021.114230.   DOI
60 Banh, T.T., Nguyen, X.Q., Herrmann, M., Filippou, F.C. and Lee, D. (2020), "Multiphase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness and Winkler foundation", Steel Compos. Struct., 35(1), 129-145. https://doi.org/10.12989/scs.2020.35.1.129.   DOI
61 Chen, S. and Feng, J. (2014), "Epoxy laminated composites reinforced with polyethyleneimine functionalized carbon fiber fabric: Mechanical and thermal properties", Compos. Sci. Technol., 101, 145-151. https://doi.org/10.1016/j.compscitech.2014.07.003.   DOI
62 Zhu, X.D., Wang, K.X., Yan, D. J., Le, S.R., Ma, R.J., Sun, K.N. and Liu, Y.T. (2015), "Creating a synergistic interplay between tubular MoS2 and particulate Fe3O4 for improved lithium storage", Chem. Commun., 51(59), 11888-11891. https://doi.org/10.1039/C5CC03898G.   DOI
63 Blackman, B., Kinloch, A., Lee, J.S., Taylor, A., Agarwal, R., Schueneman, G. and Sprenger, S. (2007), "The fracture and fatigue behaviour of nano-modified epoxy polymers", J. Mater. Sci., 42(16), 7049-7051. https://doi.org/10.1007/s10853-007-1768-6.   DOI
64 Bortz, D.R., Heras, E.G. and Martin-Gullon, I. (2011), "Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites", Macromolecules, 45(1), 238-245. https://doi.org/10.1021/ma201563k.   DOI
65 Chen, J., Dong, Y.J., Jin, F.L. and Park, S.J. (2019), "Flexural properties and electrical conductivity of epoxy resin/carbon fiber cloth/metallic powder composites", Macromol. Res., 27(1), 10-13. https://doi.org/10.1007/s13233-019-7006-7.   DOI
66 Chen, P., Liang, X., Xu, Y., Zhou, Y. and Nie, W. (2018), "Enhanced thermal and mechanical properties of PLA/MoS2 nanocomposites synthesized via the in-situ ring-opening polymerization", Appl. Surf. Sci., 440, 1143-1149. https://doi.org/10.1016/j.apsusc.2018.01.260.   DOI
67 Chen, P., Liang, X., Zhou, Y. and Nie, W. (2018), "Effective reinforcement of amino-functionalized molybdenum disulfide on epoxy-based composites via strengthened interfacial interaction", J. Mater. Sci., 53(11), 8221-8231. https://doi.org/10.1007/s10853-018-2153-3.   DOI
68 Wan, S. and Cheng, Q. (2017), "Fatigue-resistant bioinspired graphene-based nanocomposites", Adv. Funct. Mater., 27(43), 1703459. https://doi.org/10.1002/adfm.201703459.   DOI
69 Wan, Y.J., Tang, L.C., Gong, L.X., Yan, D., Li, Y.B., Wu, L.B., Jiang, J.X. and Lai, G.Q. (2014), "Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties", Carbon, 69, 467-480. https://doi.org/10.1016/j.carbon.2013.12.050.   DOI
70 Riaz, S. and Park, S.J. (2019), "Thermal and mechanical interfacial behaviors of graphene oxide-reinforced epoxy composites cured by thermal latent catalyst", Materials, 12(8), 1354. https://doi.org/10.3390/ma12081354.   DOI
71 Ibrahem, M.A., Lan, T.W., Huang, J.K., Chen, Y.Y., Wei, K.H., Li, L.J. and Chu, C.W. (2013), "High quantity and quality fewlayers transition metal disulfide nanosheets from wet-milling exfoliation", RSC Adv., 3(32), 13193-13202. https://doi.org/10.1039/C3RA41744A.   DOI
72 Nguyen, A.P., Banh, T.T., Lee, D., Lee, J., Kang, J. and Shin, S. (2018), "Design of multiphase carbon fiber reinforcement of crack existing concrete structures using topology optimization", Steel Compos. Struct., 29(5), 635-645. https://doi.org/10.12989/scs.2018.29.5.635.   DOI
73 Wang, S., Zhang, Y., Abidi, N. and Cabrales, L. (2009), "Wettability and surface free energy of graphene films", Langmuir., 25(18), 11078-11081. https://doi.org/10.1021/la901402f.   DOI