Browse > Article
http://dx.doi.org/10.12989/scs.2021.41.4.505

Vibrations and stress analysis of rotating perforated beams by using finite elements method  

Eltaher, M.A. (Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University)
Abdelmoteleb, Hanaa E. (Department of Structural Engineering, Faculty of Engineering, Zagazig University)
Daikh, Ahmed Amin (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli)
Abdelrahman, Alaa. A. (Department of Mechanical Design & Production, Faculty of Engineering, Zagazig University)
Publication Information
Steel and Composite Structures / v.41, no.4, 2021 , pp. 505-520 More about this Journal
Abstract
This paper presents a computational finite element model to study and analyze vibrations and stresses of regularly perforated rotated beams considering different perforation configurations, for the first time. Both regular circular and squared perforation configurations are considered. The geometry of the perforated beam is modelled using shell finite elements. The finite elements equations of motion are derived for a straight perforated cantilevered beam with a symmetrical cross section. The proposed computational procedure is checked by comparing the obtained results with the available results in the literature and an excellent agreement is observed. The free vibration response, as well as stress distributions throughout the beam, are investigated. The obtained results reveal that the perforation configuration, as well as the rotating speed, have remarkable effects on the dynamics and stress distributions of the rotating perforated beams.
Keywords
finite element method; perforation configurations; perforated rotating beams; stress distribution; vibration behavior;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bourouina, H., Yahiaoui, R., Kerid, R., Ghoumid, K., Lajoie, I., Picaud, F. and Herlem, G. (2020), "The influence of hole networks on the adsorption-induced frequency shift of a perforated nanobeam using non-local elasticity theory", J. Phys. Chem. Solids, 136, 109201. https://doi.org/10.1016/j.jpcs.2019.109201.   DOI
2 Bucalem, M.L. and Bathe, K.J. (2011), "The Mechanics of Solids and Structures-Hierarchical Modeling and The Finite Element Solution", Springer Science & Business Media, Cambridge, MA, USA.
3 Chen, Q. and Du, J. (2019), "A Fourier series solution for the transverse vibration of rotating beams with elastic boundary supports", Appl. Acoust., 155, 1-15. https://doi.org/10.1016/j.apacoust.2019.05.008.   DOI
4 Oh, Y. and Yoo, H.H. (2016), "Vibration analysis of rotating cantilever beams orienting inward", J. Mech. Sci. Technol., 30(9), 4177-4184. https://doi.org/10.1007/s12206-016-0829-7.   DOI
5 Chen, S. and Ren, F. (2017), "Vibration analysis of horizontal rotating beam in pipe", Int. J. Hydrogen Energy, 42(29), 18741-18746. https://doi.org/10.1016/j.ijhydene.2017.04.174.   DOI
6 Cheng, J., Xu, H. and Yan, A. (2006), "Frequency analysis of a rotating cantilever beam using assumed mode method with coupling effect", Mech. Based Des. Struct., 34(1), 25-47. https://doi.org/10.1080/15367730500501587.   DOI
7 Chung, J. and Yoo, H.H. (2002), "Dynamic analysis of a rotating cantilever beam by using the finite element method", J. Sound Vib., 249(1), 147-164. https://doi.org/10.1006/jsvi.2001.3856.   DOI
8 Abdelrahman, A.A., Abd-El-Mottaleb H.E. and Eltaher, M.A. (2020b), "On bending of perforated beams incorporating the microstructure effect", Struct. Eng. Mech., 76(6), 765-779. https://doi.org/10.12989/sem.2020.76.6.765.   DOI
9 Abdelrahman, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendy, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.   DOI
10 Aksencer, T. and Aydogdu, M. (2019), "Vibration of a rotating composite beam clamped-off the axis of rotation", Compos. Struct., 225, 111174. https://doi.org/10.1016/j.compstruct.2019.111174.   DOI
11 Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020b), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555.   DOI
12 Arab, S.B., Rodrigues, J.D., Bouaziz, S. and Haddar, M. (2017), "A finite element based on equivalent single layer theory for rotating composite shafts dynamic analysis", Compos. Struct., 178, 135-144. https://doi.org/10.1016/j.compstruct.2017.06.052.   DOI
13 Bhat, R.A. and Gupta, L.M. (2020), "Moment-gradient factor for perforated cellular steel beams under lateral torsional buckling", Arabian J. Sci. Eng., 1-17. https://doi.org/10.1007/s13369-020-04836-5.   DOI
14 Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020a), "Influence of the perforation configuration on dynamic behaviors of multilayered beam structure", Structure, 28, 1413-1426. https://doi.org/10.1016/j.istruc.2020.09.055.   DOI
15 Berkani, A. (2018), "Stabilization of a viscoelastic rotating Euler-Bernoulli beam", Math. Method. Appl. Sci., 41(8), 2939-2960.https://doi.org/10.1002/mma.4793.   DOI
16 Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643.   DOI
17 Esen (2019), "Dynamic response of functional graded Timoshenko beams in a thermal environment subjected to an accelerating load", Eur. J. Mech. - A/Solids, 78, 103841. https://doi.org/10.1016/j.euromechsol.2019.103841.   DOI
18 Nawar, M.T., Arafa, I.T. and Elhosseiny, O. (2020), "Numerical investigation on effective spans ranges of perforated steel beams", Structures, 25, 398-410. https://doi.org/10.1016/j.istruc.2020.03.026.   DOI
19 Kim, H. and Chung, J. (2016), "Nonlinear modeling for dynamic analysis of a rotating cantilever beam", Nonlinear Dynam., 86(3), 1981-2002. https://doi.org/10.1007/s11071-016-3009-5.   DOI
20 Abdelrahman, A.A., Mohamed, N.A. and Eltaher, M.A. (2020a), "Static bending of perforated nanobeams including surface energy and microstructure effects", Eng. with Comput., 1-21. https://doi.org/10.1007/s00366-020-01149-x.   DOI
21 Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020b), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219.   DOI
22 Sivakumar, N., Kanagasabapathy, H. and Srikanth, H. P. (2018), "Analysis of Perforated Piezoelectric Sandwich Smart Structure Cantilever Beam Using COMSOL", Mater. Today: Proceedings, 5(5), 12025-12034. https://doi.org/10.1016/j.matpr.2018.02.177.   DOI
23 Theocaris, P.S. (1988), "A simple solution for a perforated beam in bending and traction", Acta mechanica, 71(1-4), 21-38.   DOI
24 Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020a), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141.   DOI
25 Erfani, S. and Akrami, V. (2019), "A Nonlinear macro-model for numerical simulation of perforated steel beams", Int. J. Steel Struct., 19(5), 1605-1623. https://doi.org/10.1007/s13296-019-00239-x.   DOI
26 Fallahi, B. (2003), "Integration of dynamic equation of a rotating Timoshenko beam via Chebyshev polynomials", Int. J. Model. Simul., 23(3), 172-178. https://doi.org/10.1080/02286203.2003.11442269.   DOI
27 Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455.   DOI
28 Boumediene, F., Bekhoucha, F. and Daya, E.M. (2019), "Modal analysis of rotating viscoelastic sandwich beams", Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2019.1567887.   DOI
29 Esen, I. (2020a), "Dynamics of size-dependant Timoshenko micro beams subjected to moving loads", Int. J. Mech. Sci., 175, 105501. https://doi.org/10.1016/j.ijmecsci.2020.105501.   DOI
30 Esen, I. (2020b), "Response of a micro-capillary system exposed to a moving mass in magnetic field using nonlocal strain gradient theory", International Journal of Mechanical Sciences, 188, 105937.   DOI
31 Fan, W., Zhu, W.D. and Zhu, H. (2019), "Dynamic analysis of a rotating planar Timoshenko beam using an accurate global spatial discretization method", J. Sound Vib., 457, 261-279. https://doi.org/10.1016/j.jsv.2019.05.003.   DOI
32 Fang, J., Zhou, D. and Dong, Y. (2018), "Three-dimensional vibration of rotating functionally graded beams", J. Vib. Control, 24(15), 3292-3306. https://doi.org/10.1177/1077546317703867.   DOI
33 Feng, R., Zhan, H., Meng, S. and Zhu, J. (2018), "Experiments on H-shaped high-strength steel beams with perforated web", Eng. Struct., 177, 374-394. https://doi.org/10.1016/j.engstruct.2018.08.059.   DOI
34 Tsavdaridis, K.D. and D Mello, C. (2009), "Finite element investigation of perforated steel beams with different web opening configurations", Proceedings of the 6th ICASS'09/IJSSD, International Conference on Advances in Steel Structures and Progress in Structural Stability and Dynamics, Hong Kong, China, 16-18 December.
35 Tsavdaridis, K.D. and D'Mello, C. (2012), "Optimisation of novel elliptically-based web opening shapes of perforated steel beams", J. Constr. Steel Res., 76, 39-53. https://doi.org/10.1016/j.jcsr.2012.03.026.   DOI
36 Wang, A.J. and Chung, K.F. (2008), "Advanced finite element modelling of perforated composite beams with flexible shear connectors", Eng. Struct., 30(10), 2724-2738. https://doi.org/10.1016/j.engstruct.2008.03.001.   DOI
37 Zeng, J., Zhao, C., Ma, H. and Wen, B. (2020), "Dynamic modeling and coupling characteristics of rotating inclined beams with twisted-shape sections", Front. Mech. Eng., 15(3): 374-389. https://doi.org/10.1007/s11465-019-0580-8.   DOI
38 Tsavdaridis, K.D., D'Mello, C. and Huo, B.Y. (2013), "Experimental and computational study of the vertical shear behaviour of partially encased perforated steel beams", Eng. Struct., 56, 805-822. https://doi.org/10.1016/j.engstruct.2013.04.025.   DOI
39 Tsavdaridis, K.D., Faghih, F. and Nikitas, N. (2014), "Assessment of perforated steel beam-to-column connections subjected to cyclic loading", J. Earthq. Eng., 18(8), 1302-1325. https://doi.org/10.1080/13632469.2014.935834.   DOI
40 Tsavdaridis, K.D., Kingman, J.J. and Toropov, V.V. (2015), "Application of structural topology optimisation to perforated steel beams", Computers & structures, 158, 108-123. https://doi.org/10.1016/j.compstruc.2015.05.004.   DOI
41 Wozniak, J. and Firkowski, M. (2019), "Optimal decay ratio of damped slowly rotating Timoshenko beams", ZAMM-J. Appl. Math. Mech., 99(10), e201800222. https://doi.org/10.1002/zamm.201800222.   DOI
42 Degtyarev, V.V. (2020), "Flexural strength of steel decks with square and rectangular holes: Numerical studies", J. Constr. Steel Res., 172, 106241. https://doi.org/10.1016/j.jcsr.2020.106241.   DOI
43 Ebrahimi, F. and Haghi, P. (2018a), "Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment", Adv. Nano Res., 6(1), 21. https://doi.org/10.12989/anr.2018.6.1.021.   DOI
44 Eltaher, M.A. and Abdelrahman, A.A. (2020), "Bending behavior of squared cutout nanobeams incorporating surface stress effects", Steel Compos.Struct., 36(2), 143-161. https://doi.org/10.12989/scs.2020.36.2.143.   DOI
45 Gunda, J.B. and Ganguli, R. (2008), "New rational interpolation functions for finite element analysis of rotating beams", Int. J. Mech. Sci., 50(3), 578-588. https://doi.org/10.1016/j.ijmecsci.2007.07.014.   DOI
46 Carnegie, W. (1959), "Vibrations of rotating cantilever blading: theoretical approaches to the frequency problem based on energy methods", J. Mech. Eng. Sci., 1(3), 235-240. https://doi.org/10.1243/JMES_JOUR_1959_001_028_02.   DOI
47 Chen, Z. and Qian, L. (2020), "Nonlinear dynamic characteristics analysis of planar flexible rotating beams with clearance joint", J. Braz. Soc. Mech. Sci. Eng., 42(333), 333. https://doi.org/10.1007/s40430-020-02388-1.   DOI
48 Feyzollahzadeh, M. and Bamdad, M. (2019), "Vibration analysis of rotating beam with variable cross section using Riccati transfer matrix method", Struct. Eng. Mech.,70(2), 199-207. https://doi.org/10.12989/sem.2019.70.2.199.   DOI
49 Gohar, S., Afefy, H. M., Kassem, N.M. and Taher, S.E.D.F. (2017), "Flexural performance of self-compacted perforated concrete beams under repeated loading", Eng. Struct., 143, 441-454. https://doi.org/10.1016/j.engstruct.2017.04.031.   DOI
50 Guha, K., Kumar, M., Agarwal, S. and Baishya, S. (2015), "A modified capacitance model of RF MEMS shunt switch incorporating fringing field effects of perforated beam", Solid-State Electron., 114, 35-42. https://doi.org/10.1016/j.sse.2015.07.008.   DOI
51 Han, H., Liu, L. and Cao, D. (2020), "Dynamic modeling for rotating composite Timoshenko beam and analysis on its bending-torsion coupled vibration", Appl. Math. Model., 78, 773-791. https://doi.org/10.1016/j.apm.2019.09.056.   DOI
52 https://doi.org/10.1016/B978-008044017-0/50013-5   DOI
53 Yachin, V.V. and Zinenko, T.L. (2016), "3-D Gaussian beam scattering from a gyromagnetic perforated layer: Quasi-static approach", Opt. Commun., 380, 425-433. https://doi.org/10.1016/j.optcom.2016.06.032.   DOI
54 Esen, I. (2018), "Finite element formulation and analysis of a functionally graded Timoshenko beam subjected to an accelerating mass including inertial effects of the mass", Latin Am. J. Solids Struct., 15(10). https://doi.org/10.1590/1679-78255102.   DOI
55 https://doi.org/10.1016/j.ijmecsci.2020.105937   DOI
56 https://doi.org/10.1016/j.tws.2020.107407   DOI
57 Hu, Y., Zhao, Y., Wang, N. and Chen, X. (2020), "Dynamic analysis of varying speed rotating pretwisted structures using refined beam theories", Int. J. Solids. Struct., 185, 292-310. https://doi.org/10.1016/j.ijsolstr.2019.08.008.   DOI
58 Huang, Y.M. and Yang, M.L. (2009), "Dynamic analysis of a rotating beam subjected to repeating axial and transverse forces for simulating a lathing process", Int. J. Mech. Sci., 51(3), 256-268. https://doi.org/10.1016/j.ijmecsci.2008.12.005.   DOI
59 Yang, J.L. and Yu, T.X. (2001), "Dynamic plastic behavior of a free-rotating hinged beam striking a cantilever beam", Mech. Struct. Mach., 29(3), 391-409. https://doi.org/10.1081/SME100105657.   DOI
60 Yang, X., Wang, S., Zhang, W., Qin, Z. and Yang, T. (2017), "Dynamic analysis of a rotating tapered cantilever Timoshenko beam based on the power series method", Appl. Math. Mech., 38(10), 1425-1438. https://doi.org/10.1007/s10483-017-2249-6.   DOI
61 Yang, X.D., Wang, S. W., Zhang, W., Yang, T.Z. and Lim, C.W. (2018), "Model formulation and modal analysis of a rotating elastic uniform Timoshenko beam with setting angle", Eur. J. Mech. -A/Solids, 72, 209-222. https://doi.org/10.1016/j.euromechsol.2018.05.014.   DOI
62 Chung, K.F. and Wang, A.J. (2004), "Verification to design of perforated composite beams using finite element method'. In Proc. Int. Conf. Steel and Composite Structures, Seoul, Korea September.
63 Ebrahimi, F. and Haghi, P. (2018b), "Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment", Adv. Nano Res., 6(3), 201-217. https://doi.org/10.12989/anr.2018.6.3.201.   DOI
64 Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6.   DOI
65 Yu, Y.S. and Liu, X.Y. (2020), "Finite element analyses on energy dissipation capacity of upper flange welded-lower flange bolted beam-column connection with slotted holes", J. Asian Architect. Build. Eng., 1-12. https://doi.org/10.1080/13467581.2020.1749639.   DOI
66 Kim, H., Yoo, H.H. and Chung, J. (2013), "Dynamic model for free vibration and response analysis of rotating beams", J. Sound Vib., 332(22), 5917-5928. https://doi.org/10.1016/j.jsv.2013.06.004.   DOI
67 Huo, Y. and Wang, Z. (2016), "Dynamic analysis of a rotating double-tapered cantilever Timoshenko beam", Arch. Appl. Mech., 86(6), 1147-1161. https://doi.org/10.1007/s00419-015-1084-6.   DOI
68 Jeong, K.H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1-2), 404-419. https://doi.org/10.1016/j.jsv.2006.05.029.   DOI
69 Zaher, O.F., Yossef, N.M., El-Boghdadi, M.H. and Dabaon, M.A. (2018), "Structural behaviour of arched steel beams with cellular openings", J. Constr. Steel Res., 148, 756-767. https://doi.org/10.1016/j.jcsr.2018.06.029.   DOI
70 Zhao, C., Zeng, J., Ma, H., Ni, K. and Wen, B. (2020), "Dynamic Analysis of Cracked Rotating Blade Using Cracked Beam Element", Results in Phys., 19, 103360. https://doi.org/10.1016/j.rinp.2020.103360.   DOI
71 Ko, C.H. and Chung, K.F. (2002), "A review of recent developments on design of perforated beams", Adv. Steel Struct., (ICASS'02), 121-128.
72 Li, L., Liao, W. H., Zhang, D. and Guo, Y. (2019), "Dynamic modeling and analysis of rotating beams with partially covered enhanced active constrained layer damping treatment", J. Sound Vibr., 455, 46-68. https://doi.org/10.1016/j.jsv.2019.04.026.   DOI
73 Ma'en, S.S. and Butcher, E.A. (2012), "Free vibration analysis of non-rotating and rotating Timoshenko beams with damaged boundaries using the Chebyshev collocation method", Int. J. Mech. Sci., 60(1), 1-11. https://doi.org/10.1016/j.ijmecsci.2012.03.008.   DOI
74 Li, L., Wu, J.Q., Zhu, W.D., Wang, L., Jing, L.W., Miao, G.H. and Li, Y.H. (2020), "A nonlinear dynamical model for rotating composite thin-walled beams subjected to hygrothermal effects", Compos. Struct., 112839. https://doi.org/10.1016/j.compstruct.2020.112839.   DOI
75 Lin, B.C., Xie, T.F., Xu, M., Li, Y.H. and Yang, J. (2019), "Natural frequencies and dynamic responses of rotating composite nonuniform beams with an elastically root in hygrothermal environment", Compos. Struct., 209, 968-980. https://doi.org/10.1016/j.compstruct.2018.11.029.   DOI
76 Luschi, L. and Pieri, F. (2012), "A simple analytical model for the resonance frequency of perforated beams", Procedia Eng., 47, 1093-1096. https://doi.org/10.1016/j.proeng.2012.09.341.   DOI
77 Nikolic, A. and Salinic, S. (2017), "Dynamics of the rotating cantilever beam", In IX International Conference "Heavy Machinery-HM. Zlatibor, 28 June - 1 July 2.
78 Malik, M. and Das, D. (2020), "Free vibration analysis of rotating nano-beams for flap-wise, chord-wise and axial modes based on Eringen's nonlocal theory", Int. J. Mech. Sci., 105655. https://doi.org/10.1016/j.ijmecsci.2020.105655.   DOI
79 Mohammadnejad, M. and Saffari, H. (2019), "Flapwise and non-local bending vibration of the rotating beams", Struct. Eng. Mech., 72(2), 229-244. https://doi.org/10.12989/sem.2019.72.2.229.   DOI
80 Nadia, B., Martina, B., Bernuzzi, C. and Simoncelli, M. (2020), "Perforated TWCF steel beam-columns: European design alternatives", Steel Compos. Struct., 35(5), 701-715. http://doi.org/10.12989/scs.2020.35.5.701.   DOI
81 Ondra, V. and Titurus, B. (2019), "Free vibration analysis of a rotating pre-twisted beam subjected to tendon-induced axial loading", J. Sound Vib., 461, 114912. https://doi.org/10.1016/j.jsv.2019.114912.   DOI
82 Ozarpa, C. and Esen, I (2020), "Modelling the dynamics of a nanocapillary system with a moving mass using the non-local strain gradient theory", Math. Method. Appl. Sci., https://doi.org/10.1002/mma.6812.   DOI
83 Rao, S.S. (2007), "Vibration of Continuous Systems", (Vol. 464), Wiley & Sons, Inc, New York.
84 Ryigit, E., Zor, M. and Arman, Y. (2009), "Hole effects on lateral buckling of laminated cantilever beams", Compos. Part B: Engineering, 40(2), 174-179. https://doi.org/10.1016/j.compositesb.2008.07.005.   DOI
85 She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin-Walled Structures, 160, 107407.   DOI
86 Tsavdaridis, K. D. and D'Mello, C. (2011), "FE Modelling Techniques for Web-Post Buckling Response", Proceedings of the 6th European Conference on Steel and Composite Structures, Budapest, Hungary, August.
87 Eltaher, M.A. and Mohamed, N.A. (2020), "Vibration of nonlocal perforated nanobeams with general boundary conditions", Smart Struct. Syst., 25(4), 501-514. https://doi.org/10.12989/sss.2020.25.4.501.   DOI
88 Guo, Y., Li, L. and Zhang, D. (2019), "Dynamic modeling and vibration analysis of rotating beams with active constrained layer damping treatment in temperature field", Compos. Struct., 226, 111217. https://doi.org/10.1016/j.compstruct.2019.111217.   DOI
89 Li, Y. and Li, M. (2020), "Dynamic analysis of rotating double-tapered cantilever Timoshenko nano-beam using the nonlocal strain gradient theory", Math. Method. Appl. Sci., 43(15), 9206-9222. https://doi.org/10.1002/mma.6616.   DOI
90 Ghadiri, M. and Shafiei, N. (2016), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronautica, 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003.   DOI