Browse > Article
http://dx.doi.org/10.12989/scs.2021.41.3.437

Finite element elastoplastic homogenization model of a corrugated-core sandwich structure  

Luong, Viet D. (MATIM, University of Reims Champagne-Ardenne, UFR SEN, Campus Moulin de la Housse)
Abbes, Fazilay (MATIM, University of Reims Champagne-Ardenne, UFR SEN, Campus Moulin de la Housse)
Hoang, Minh P. (Thai Nguyen University of Technology)
Duong, Pham T.M. (Thai Nguyen University of Technology)
Abbes, Boussad (MATIM, University of Reims Champagne-Ardenne, UFR SEN, Campus Moulin de la Housse)
Publication Information
Steel and Composite Structures / v.41, no.3, 2021 , pp. 437-445 More about this Journal
Abstract
This study aimed to develop an elastoplastic homogenization model to accurately predict the elastoplastic static behavior of a corrugated-core sandwich structure. A panel composed of two planar layers and one corrugated layer is modeled by a homogeneous orthotropic single-layer plate. A plane stress elastoplastic model is adopted to describe the behavior of each layer. Homogenization is achieved by local integration across the thickness of each layer. The proposed homogenization model is implemented in the ABAQUS finite element software using UGENS user subroutine. The results obtained by our model are compared to those obtained by full 3D simulations under different loading conditions. The comparisons show the efficiency and the accuracy of the proposed elastoplastic homogenization model.
Keywords
composite structure; corrugated cardboard; elastoplastic behavior; FEM simulation; homogenization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, (2nd Edition), CRC Press, Boca Raton, FL, USA.
2 Shokrollahi, H., Fallah, F. and Kargarnovin, M.H. (2017), "An approach in deformation and stress analysis of elasto-plastic sandwich cylindrical shell panels based on harmonic differential quadrature method", J. Sandw. Struct. Mater., 19(2), 167-191. https://doi.org/10.1177/1099636215604553.   DOI
3 Stenberg, N. (2003), "A model for the through-thickness elastic-plastic behaviour of paper", Int. J. Solid. Struct., 40(26), 7483- 7498. https://doi.org/10.1016/j.ijsolstr.2003.09.003.   DOI
4 Stenberg, N., Fellers, C. and Ostlund, S. (2001), "Plasticity in the thickness direction of paperboard under combined shear and normal loading", J. Eng. Mater. Technol., 123(2), 184-190. https://doi.org/10.1115/1.1352747.   DOI
5 Talbi, N., Batti, A., Ayad, R. and Guo, Y.Q. (2009), "An analytical homogenization model for finite element modelling of corrugated cardboard", Compos. Struct., 88(2): 280-289. https://doi.org/10.1016/j.compstruct.2008.04.008.   DOI
6 Tsai, S.W. and Wu, E.M. (1971), "A general theory of strength for anisotropic materials", J. Compos. Mater., 5(1), 58-80. https://doi.org/10.1177/002199837100500106.   DOI
7 Hoffman, O. (1967), "The brittle strength of orthotropic materials", J. Compos. Mater., 1(2), 200-206. https://doi.org/10.1177/002199836700100210.   DOI
8 Aboura, Z., Talbi, N., Allaoui, S. and Benzeggagh, M.L. (2004), "Elastic behavior of corrugated cardboard: experiments and modeling", Compos. Struct., 63(1), 53-62. https://doi.org/10.1016/S0263-8223(03)00131-4.   DOI
9 Duong, P.T.M., Abbes, B., Li, Y.M., Hammou, A.D., Makhlouf, M. and Guo, Y.Q. (2013), "An analytic homogenization model for shear-torsion coupling problems of double corrugated core sandwich plates", J. Compos. Mater., 47(11), 1327-1341. https://doi.org/10.1177/0021998312447206.   DOI
10 ABAQUS Inc. (2019), https://www.3ds.com/productsservices/simulia/products/abaqus/.
11 Adim, B., Daouadji, T.H. and Rabahi, A. (2016), "A simple higher order shear deformation theory for mechanical behavior of laminated composite plates", Int. J. Adv. Struct. Eng., 8, 103-117. https://doi.org/10.1007/s40091-016-0109-x.   DOI
12 Adim, B. and Hassaine Daouadji, T. (2016), "Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory", Adv. Mater. Res., 5(4), 223-244. https://doi.org/10.12989/amr.2016.5.4.223.   DOI
13 Cong, Y., Nezamabadi, S., Zahrouni, H. and Yvonnet, J. (2015), "Multiscale computational homogenization of heterogeneous shells at small strains with extensions to finite displacements and buckling", Int. J. Numer. Method. Eng., 104(4), 235-259. https://doi.org/10.1002/nme.4927.   DOI
14 Adim, B., Hassaine Daouadji, T., Rabahi, A., Benhenni, M.A., Zidour, M. and Abbes, B. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.   DOI
15 Biancolini, M.E. (2005), "Evaluation of equivalent stiffness properties of corrugated board", Compos. Struct., 69(3), 322-328. https://doi.org/10.1016/j.compstruct.2004.07.014.   DOI
16 Benhenni, M.A., Adim, B., Hassaine Daouadji, T., Abbes, B., Abbes, F., Li, Y. and Bouzidane, A. (2019), "A comparison of closed form and finite element solutions for the free vibration of hybrid cross ply laminated plates", Mech. Compos. Mater., 55(2). https://doi.org/10.1007/s11029-019-09803-2.   DOI
17 Buannic, N., Cartraud, P. and Quesnel, T. (2003), "Homogenization of corrugated core sandwich panels", Compos. Struct., 59(3), 299-312. https://doi.org/10.1016/S0263-8223(02)00246-5.   DOI
18 Carlsson, L.A., Nordstrand, T. and Westerlind, B. (2001), "On the elastic stiffnesses of corrugated core sandwich", J. Sandw. Struct. Mater., 3(4), 253-267. https://doi.org/10.1106/BKJFN2TF-AQ97-H72.   DOI
19 Dayyani, I., Friswell, M.I., Ziaei-Rad, S. and Saavedra Flores, E.I. (2013), "Equivalent models of composite corrugated cores with elastomeric coatings for morphing structures", Compos. Struct., 104, 281-292. https://doi.org/10.1016/j.compstruct.2013.04.034.   DOI
20 Chang, W.S., Krauthammer, T. and Ventsel, E. (2006), "Elastoplastic analysis of corrugated-core sandwich plates", Mech. Adv. Mater. Struct., 13, 151-160. https://doi.org/10.1080/15376490500451767.   DOI
21 Haj-Ali, R., Choi, J., Wei, B.S., Popil, R. and Schaepe, M. (2009), "Refined nonlinear finite element models for corrugated fiberboards", Compos. Struct., 87(4): 321-333. https://doi.org/10.1016/j.compstruct.2008.02.001.   DOI
22 Hammou, A.D., Duong, P.T.M., Abbes, B., Makhlouf, M and Guo, Y.Q. (2012), "Finite element simulation with a homogenization model and experimental study of free drop tests of corrugated cardboard packaging", Mech. Ind., 13(3), 175-184. https://doi.org/10.1051/meca/2012013.   DOI
23 Harrysson, A. and Ristinmaa, M. (2008), "Large strain elastoplastic model of paper and corrugated board", Int. J. Solids Struct., 45(11-12), 3334-3352. https://doi.org/10.1016/j.ijsolstr.2008.01.031.   DOI
24 Nezamabadi, S., Yvonnet, J., Zahrouni, H. and Potier-Ferry, M. (2009), "A multilevel computational strategy for microscopic and macroscopic instabilities", Comput. Method. Appl. M., 198(27-29), 2099-2110. https://doi.org/10.1016/j.cma.2009.02.026.   DOI
25 Khalkhali, A., Sarmadi, M., Khakshournia, S. and Jafari, N. (2016), "Probabilistic multi-objective optimization of a corrugated-core sandwich structure", Geomech. Eng., 10(6), 709-726. https://doi.org/10.12989/gae.2016.10.6.709.   DOI
26 Kiymaz, G., Coskun, E., Cosgun, C. and Seckin, E. (2010), "Transverse load carrying capacity of sinusoidally corrugated steel web beams with web openings", Steel Compos. Struct., 10(1), 69-85. https://doi.org/10.12989/scs.2010.10.1.069.   DOI
27 Luong, V.D., Bonnin, A.-S., Abbes, F., Nolot, J.B., Erre, D. and Abbes, A. (2020), "Finite element and experimental investigation on the effect of repetitive shock in corrugated cardboard packaging", J. Appl. Comput. Mech., 7(2), 8 https://doi.org/10.22055/JACM.2020.35968.2771.   DOI
28 Makela, P. and Ostlund, S. (2003), "Orthotropic elastic-plastic material model for paper materials", Int. J. Solids Struct., 40(21), 5599-5620. https://doi.org/10.1016/S0020-7683(03)00318-4.   DOI
29 Moon, J., Ko, H.J., Sung, I.H. and Lee, H.E. (2015), "Natural frequency of a composite girder with corrugated steel web", Steel Compos. Struct., 18(1), 255-271. http://dx.doi.org/10.12989/scs.2015.18.1.255.   DOI
30 Hassaine Daouadji, T., Abbes, B., Rabahi, A., Benferhat, R., Abbes, F. and Adim, B. (2019), "Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., 72(4), 409-419. http://doi.org/10.12989/sem.2019.72.4.409.   DOI
31 Nordstrand, T.M. (2004b), "On buckling loads for edge-loaded orthotropic plates including transverse shear", Compos. Struct., 65(1), 1-6. https://doi.org/10.1016/S0263-8223(03)00154-5.   DOI
32 Hill, R. (1948), "A theory of the yielding and plastic flow in anisotropic metals", Proceedings of the Royal Society A, 193, 111-128. https://doi.org/10.1098/rspa.1948.0045.   DOI
33 Nordstrand, T.M., Carlsson, L.A. and Allen, H.G. (1994), "Transverse shear stiffness of structural core sandwich", Compos. Struct., 27(3), 317-329. https://doi.org/10.1016/0263-8223(94)90091-4.   DOI
34 Nordstrand, T.M. (1995), "Parametric study of the post-buckling strength of structural core sandwich panels", Compos. Struct., 30(4), 441-451. https://doi.org/10.1016/0263-8223(94)00066-2.   DOI
35 Rabczuk, T., Kim, J.Y., Samaniego, E. and Belytschko, T. (2004), "Homogenization of sandwich structures", Int. J. Numer. Method. Eng., 61, 1009-1027. https://doi.org/10.1002/nme.1100.   DOI
36 Reany, J. and Grenestedt, J.L. (2009), "Corrugated skin in a foam core sandwich panel", Compos. Struct., 89(3), 345-355. https://doi.org/10.1016/j.compstruct.2008.08.008.   DOI
37 Li, Y.M., Abbes, B. and Guo, Y.Q. (2007), "Two efficient algorithms of plastic integration for sheet forming modeling", J. Manufact. Sci. Eng. T. ASME, 129(4), 698-704. https://doi.org/10.1115/1.2738125.   DOI
38 Xia, Q.S., Boyce, M.C. and Parks, D.M. (2002), "A constitutive model for the anisotropic elastic-plastic deformation of paper and paper board", Int. J. Solids Struct., 39(15), 4053-4071. https://doi.org/10.1016/S0020-7683(02)00238-X.   DOI
39 Nordstrand, T.M. (2004a), "Analysis and testing of corrugated board panels into the post-buckling regime", Compos. Struct., 63(2), 189-199. https://doi.org/10.1016/S0263-8223(03)00155-7.   DOI
40 Rabahi, A. Benferhat, R., Hassaine Daouadji, T., Abbes, B., Adim, B. and Abbes, F. (2018), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Adv. Mater. Res., 7(2), 83-103. https://doi.org/10.12989/amr.2018.7.2.083   DOI
41 Abbes, B. and Guo, Y.Q. (2010), "Analytic homogenization for torsion of orthotropic sandwich plates: application to corrugated cardboard", Compos. Struct., 92(3), 699-706. https://doi.org/10.1016/j.compstruct.2009.09.020.   DOI
42 Karafillis, A.P. and Boyce, M.C. (1993), "A general anisotropic yield criterion using bounds and a transformation weighting tensor", J. Mech. Phys. Solids, 41(12), 1859-1886. https://doi.org/10.1016/0022-5096(93)90073-O.   DOI