Browse > Article
http://dx.doi.org/10.12989/scs.2021.41.1.031

Hygro-thermo-mechanical bending of laminated composite plates using an innovative computational four variable refined quasi-3D HSDT model  

Ameri, Anfel (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Fekrar, Abdelkader (Department of Civil Engineering, Faculty of Technology, University of Sidi Bel Abbes)
Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Selim, Mahmoud M. (Department of Mathematics, Al-Aflaj College of Science and Humanities, Prince Sattam bin Abdulaziz University)
Benrahou, Kouider Halim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Publication Information
Steel and Composite Structures / v.41, no.1, 2021 , pp. 31-44 More about this Journal
Abstract
The current investigation presents hygro-thermo-mechanical analysis of simply supported anti-symmetric composite plates by using an original computational four unknown's quasi-3D inverse tangent hyperbolic theory. The developed formulations take into account the thickness stretching effect and contain indeterminate integral variables to reduce the number of unknowns. The present model ensures the transverse shear stresses nullity at the top and the bottom surfaces without using any shear correction factor. The governing equations are determined with the help of virtual work principle. The analytical solution of the hygro-thermo-mechanical analysis is derived via Navier's procedure. The accuracy and efficiency of current model is checked by comparing the results with others models found in the literature. Several numerical results are presented in graphs form to show the effects of the aspect, geometry and modulus ratio on the stress and transverse displacement of the simply supported anti-symmetric composite plates.
Keywords
composite plate; hygro-thermo-mechanical analysis; quasi-3D HSDT; virtual work principle;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Abouelregal, A.E., Mohammed, W.W. and Mohammad-Sedighi, H. (2021), "Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags", Arch. Appl. Mech., 91(5), 2127-2142. https://doi.org/10.1007/s00419-020-01873-2.   DOI
2 Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.   DOI
3 Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.   DOI
4 Benhamed, M.M. and Abouelregal, A.E. (2020), "Influence of temperature pulse on a nickel microbeams under couple stress theory", J. Appl. Comput. Mech., 6(4), 777-787. https://doi.org/10.22055/JACM.2019.30918.1789.   DOI
5 Civalek, O. and Avcar, M. (2020), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. with Comput., https://doi.org/10.1007/s00366-020-01168-8.   DOI
6 Ghugal, Y.M. and Shimpi, R.P. (2002), "A Review of refined shear deformation theories of isotropic and anisotropic laminated plates", J. Reinf. Plast. Comp., 21(9), 775-813. https://doi.org/10.1177/073168402128988481.   DOI
7 Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293. https://doi.org/10.12989/anr.2021.10.3.281.   DOI
8 Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.   DOI
9 Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2020b), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.   DOI
10 Shahsavari, D., Karami, B. and Janghorban, M. (2019a), "On buckling analysis of laminated composite plates using a nonlocal refined four-variable model", Steel Compos. Struct., 32(2), 173-187. http://doi.org/10.12989/scs.2019.32.2.173.   DOI
11 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
12 Abouelregal, A.E. (2020), "On Green and Naghdi thermoelasticity model without energy dissipation with higher order time differential and phase-lags", J. Appl. Comput. Mech., 6(3), 445-456. https://doi.org/10.22055/JACM.2019.29960.1649.   DOI
13 Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.   DOI
14 Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.   DOI
15 Akbas, S.D. (2019), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupled Syst. Mech., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459.   DOI
16 AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. https://doi.org/10.12989/cac.2020.26.3.285.   DOI
17 Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Compos. Struct.,113223. https://doi.org/10.1016/j.compstruct.2020.113223.   DOI
18 Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.   DOI
19 Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/gae.2015.9.5.631.   DOI
20 Ebrahimi, F. and Barati, M.R. (2018), "Hygro-thermal vibration analysis of bilayer graphene sheet system via nonlocal strain gradient plate theory", J. Braz. Soc. Mech. Sci. Eng., 40(9). https://doi.org/10.1007/s40430-018-1350-y.   DOI
21 Wang, H., Yan, W. and Li, C. (2020), "Response of angle-ply laminated cylindrical shells with surface-bonded piezoelectric layers", Struct. Eng. Mech., 76(5), 599-611. https://doi.org/10.12989/sem.2020.76.5.599.   DOI
22 Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.   DOI
23 Tounsi, A. (2021), "Towards a theoretical and mathematical proof of the universality of free fall, the equivalence principle, and the confirmation of the Einstein's theory of general relativity", Presentation, 1-9. https://doi.org/10.13140/RG.2.2.18242.30402
24 Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.   DOI
25 Wu, Z.P., Liu, G.R. and Han, X. (2002), "An Inverse Procedure for Crack Detection in Anisotropic Laminated Plates Using Elastic Waves", Eng. with Comput., 18(2), 116-123. https://doi.org/10.1007/s003660200010.   DOI
26 Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020a), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.551.   DOI
27 Karama, M., Afaq, K.S. and Mistou, S. (2009), "A new theory for laminated composite plates", Proc. IMechE Part L: J. Mater. Des. Appl., 223, 53-62. https://doi.org/10.1243/14644207JMDA189.   DOI
28 Gbeminiyi, M.S. (2021), "Perturbation Methods to Analysis of Thermal, Fluid Flow and Dynamics Behaviors of Engineering Systems", A Collection of Papers on Chaos Theory and Its Applications., https://doi.org/10.5772/intechopen.96059.
29 Shahsavari, D., Karami, B. and Janghorban, M. (2019b), "Size-dependent vibration analysis of laminated composite plates", Steel Compos. Struct., 7(5), 337-349. http://doi.org/10.12989/anr.2019.7.5.337   DOI
30 Benferhat, R., Daouadji, T.H. and Rabahi, A. (2021), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41-55. https://doi.org/10.12989/cme.2021.3.1.041.   DOI
31 Ghumare, S.M. and Sayyad, A.S. (2019), "Nonlinear hygro-thermo-mechanical analysis of functionally graded plates using a fifth-order plate theory", Arab. J. Sci. Eng., 44, 8727-8745. https://doi.org/10.1007/s13369-019-03894-8.   DOI
32 Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.   DOI
33 Hashim, H.A. and Sadiq, I.A. (2021), "A five-variable refined plate theory for thermal buckling analysis of composite plates", Compos. Mater. Eng., 3(2), 135-155. http://dx.doi.org/10.12989/cme.2021.3.2.135.   DOI
34 Jena, S.K., Chakraverty, S., Malikan, M. and Mohammad-Sedighi, H. (2020a), "Hygro-Magnetic Vibration of the Single-Walled Carbon Nanotube with Nonlinear Temperature Distribution Based on a Modified Beam Theory and Nonlocal Strain Gradient Model", Int. J. Appl. Mech., 12(5). https://doi.org/10.1142/S1758825120500544.   DOI
35 Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stresses, 1-19. https://doi.org/10.1080/01495739.2019.1673687.   DOI
36 Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.   DOI
37 Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.   DOI
38 Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.   DOI
39 Ghorbanpour Arani, A., Hashemian, M., Loghman, A. and Mohammadimehr, M. (2011), "Study of dynamic stability of the double-walled carbon nanotube under axial loading embedded in an elastic medium by the energy method", J. Appl. Mech. Tech. Phys., 52(5), 815-824. https://doi.org/10.1134/s0021894411050178.   DOI
40 Sofiyev, A., Aksogan, O., Schnack, E. and Avcar, M. (2008), "The stability of a three-layered composite conical shell containing a FGM layer subjected to external pressure", Mech. Adv. Mater. Struct., 15(6-7), 461-466. https://doi.org/10.1080/15376490802138492.   DOI
41 Kim, S.E., Thai, H.T. and Lee, J. (2009), "A two variable refined plate theory for laminated composite plates", Compos. Struct., 89(2), 197-205. https://doi.org/10.1016/j.compstruct.2008.07.017.   DOI
42 Reddy, J.N. and Robbins, D.H. (1994), "Theories and computational models for composite laminates", Appl. Mech. Rev., 47(6), 147-169. https://doi.org/10.1115/1.3111076.   DOI
43 Jena, S.K., Chakraverty, S., Malikan, M. and Mohammad-Sedighi, H. (2020b), "Implementation of hermite-ritz method and navier's technique for vibration of functionally graded porous nanobeam embedded in winkler-pasternak elastic foundation using bi-helmholtz nonlocal elasticity", J. Mech. Mater. Struct., 15(3), 405-434. https://doi.org/10.2140/jomms.2020.15.405.   DOI
44 Joshan, Y.S., Grover, N. and Singh, B.N. (2017), "New non-polynomial four variable shear deformation theory in axiomatic formulation for hygro-thermo-mechanical analysis of laminated composite plates", Compos. Struct., 182, 685-693. https://doi.org/10.1016/j.compstruct.2017.09.029.   DOI
45 Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., 7(1), 51-61. http://doi.org/10.12989/anr.2019.7.1.051   DOI
46 Kant, T. and Khare R.K. (1997), "A higher-order facet quadrilateral composite shell element", Int. J. Numer. Meth. Eng., 40, 4477-4499. https://doi.org/10.1002/(SICI)10970207(19971230)40:24<4477::AIDNME229>3.0.CO;2-3.   DOI
47 Soltani, D., Khorshidi, M.A. and Sedighi, H.M. (2021), "Higher order and scale-dependent micro-inertia effect on the longitudinal dispersion based on the modified couple stress theory", J. Comput. Design Eng., 8(1), 189-194. https://doi.org/10.1093/jcde/qwaa070.   DOI
48 Karama, M., Afaq, K.S. andMistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40(6), 1525-1546. https://doi.org/10.1016/s0020-7683(02)00647-9.   DOI
49 Kiani, Y. and Mirzaei, M. (2018), "Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements", Compos. Struct., 186, 114-122. https://doi.org/10.1016/j.compstruct.2017.11.086.   DOI
50 Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056.   DOI
51 Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.   DOI
52 Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2020), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. with Comput., https://doi.org/10.1007/s00366-020-01002-1.   DOI
53 Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7). https://doi.org/10.3390/ma13071707.   DOI
54 Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021b), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.   DOI
55 Yaylaci, M., Eyuboglu, A., Adiyaman, G., Yaylaci, E.U., Oner, E. and Birinci, A. (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154. https://doi.org/10.1016/j.mechmat.2020.103730.   DOI
56 Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.   DOI
57 Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.   DOI
58 Yaylaci, M., Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.775.   DOI
59 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", ur. J. Mech. - A/Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.   DOI
60 Mercan, K., Ebrahimi, F. and Civalek, O. (2020), "Vibration of angle-ply laminated composite circular and annular plates", Steel Compos. Struct., 34(1), 141-154. https://doi.org/10.12989/scs.2020.34.1.141.   DOI
61 Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.   DOI
62 Pagano, N.J. (1970), "Exact solutions for bidirectional composites and sandwich plates", J. Compos. Mater., 4, 20-34.   DOI
63 Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745. https://doi.org/10.1115/1.3167719.   DOI
64 Sayyad, A.S. and Ghugal, Y.M. (2014), "A new shear and normal deformation theory for isotropic, transversely isotropic, laminated composite and sandwich plates", Int. J. Mech. Mater. Des., 10(3), 247-267. https://doi.org/10.1007/s10999-014-9244-3.   DOI
65 Tanzadeh, H. and Amoushahi, H. (2021), "Analysis of laminated composite plates based on different shear deformation plate theories", Struct. Eng. Mech., 75(2), 247-269. https://doi.org/10.12989/sem.2020.75.2.247.   DOI
66 Sayyad, A.S., Ghugal, Y.M. and Mhaske, B.A. (2015), "A four-variable plate theory for thermoelastic bending analysis of laminated composite plates", J. Therm. Stresses, 38(8), 904-925. https://doi.org/10.1080/01495739.2015.1040310.   DOI
67 Naik, N.S. and Sayyad, A.S. (2019), "An accurate computational model for thermal analysis of laminated composite and sandwich plates", J. Therm. Stresses, 1-21. https://doi.org/10.1080/01495739.2018.1522986.   DOI
68 Pourmoayed, A., Fard, K.M. and Rousta, B. (2021), "Free vibration analysis of sandwich structures reinforced by functionally graded carbon nanotubes", Compos. Mater. Eng., 3(1), 1-23. http://doi.org/10.12989/cme.2021.3.1.001.   DOI
69 Reddy, J.N. and Hsu, Y.S. (1980), "Effects of shear deformation and anisotropy on the thermal bending of layered composite plates", J. Therm. Stresses, 3(4), 475-493. https://doi.org/10.1080/01495738008926984.   DOI
70 Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.   DOI
71 Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.   DOI
72 Abbas, S., Benguediab, S., Draiche, K., Bakora, A. and Benguediab, M. (2020), "An efficient shear deformation theory with stretching effect for bending stress analysis of laminated composite plates", Struct. Eng. Mech., 74(3), 365-380. https://doi.org/10.12989/sem.2020.74.3.365.   DOI
73 Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361.   DOI
74 Shahmohammadi, M.A., Azhari, M. and Saadatpour, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method", Steel Compos. Struct., 34(3), 361-376. https://doi.org/10.12989/scs.2020.34.3.361.   DOI
75 Lyashenko, I.A., Borysiuk, V.N. and Popov, V.L. (2020), "Dynamical model of the asymmetric actuator of directional motion based on power-law graded materials", Facta Universitatis, Series: Mech. Eng., 18(2), 245-254. https://doi.org/10.22190/FUME200129020L.   DOI
76 Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.   DOI
77 Mindlin, R.D. (1951)," Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", Journal of Applied Mechanics-transactions of The Asme, 18, 31-38. DOI:10.1007/978-1-4613-8865-4_29.   DOI
78 Abdul Kareem Abed, Z. and Ibraheem Majeed, W. (2020), "Effect of boundary conditions on harmonic response of laminated plates ", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.   DOI
79 Gomes, G.F., de Almeida, F.A., Ancelotti, A.C. and da Cunha, S.S. (2020), "Inverse structural damage identification problem in CFRP laminated plates using SFO algorithm based on strain fields", Eng. with Comput., https://doi.org/10.1007/s00366-020-01027-6.   DOI