Browse > Article
http://dx.doi.org/10.12989/scs.2021.40.6.893

Numerical forced vibration analysis of compositionally gradient porous cylindrical microshells under moving load and thermal environment  

Shi, Jianwei (School of Chemistry and Chemical Engineering, Yangtze Normal University)
Teng, Xiaoxu (School of Chemistry and Chemical Engineering, Yangtze Normal University)
Publication Information
Steel and Composite Structures / v.40, no.6, 2021 , pp. 893-902 More about this Journal
Abstract
By using differential quadrature method (DQM), forced vibrational behavior of a porous functionally graded (FG) cylindrical scale-dependent shell in thermal environment and under a moving point load having constant velocity has been researched. Within the micro-size shell, porosities exist with even or uneven distributions. Accordingly, the material properties of the micro-size shell rely on porosities and may be defined utilizing refined power-law functions. Strain gradients have been incorporated because of the existence of size effects at micro scale. Established governing equations based on first-order shell theory have been arranged in Laplace form. Next, time responses of the micro-size shell have been calculated accomplishing inverse Laplace transform technique together with differential quadrature method (DQM). It may be understood that forced vibrational behaviors of micro-size shells are dependent on the load speed, strain gradient factor, pore volume, material gradation and temperature variation.
Keywords
DQM; dynamic response; forced vibrations; moving load; porous material; strain gradient theory;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008.   DOI
2 Guo, X., Liu, J., Dai, L., Liu, Q., Fang, D., Wei, A. and Wang, J. (2021), "Friction-wear failure mechanism of tubing strings used in high-pressure, high-temperature and high-yield gas wells", Wear, 468, 203576. https://doi.org/10.1016/j.wear.2020.203576.   DOI
3 Ebrahimi, F. and Barati, M.R. (2019b), "A nonlocal strain gradient mass sensor based on vibrating hygro-thermally affected graphene nanosheets", Iran J. Sci. Technol. T. Mech. Eng., 43(2), 205-220. https://doi.org/10.1007/s40997-017-0131-z.   DOI
4 Ebrahimi, F. and Barati, M.R. (2019c), "Damping Vibration Behavior of Viscoelastic Porous Nanocrystalline Nanobeams Incorporating Nonlocal-Couple Stress and Surface Energy Effects", Iran J. Sci. Technol. T. Mech. Eng., 43(2), 187-203. https://doi.org/10.1007/s40997-017-0127-8.   DOI
5 Ebrahimi, F., Barati, M.R. and Tornabene, F. (2019), "Mechanics of nonlocal advanced magneto-electro-viscoelastic plates", Struct. Eng. Mech., 71(3), 257-269. https://doi.org/10.12989/sem.2019.71.3.257.   DOI
6 Faleh, N.M., Abboud, I.K. and Nori, A.F. (2020), "Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects", Smart Struct. Syst., 25(6), 707-717. https://doi.org/10.12989/sss.2020.25.6.707.   DOI
7 Mirjavadi, S.S., Forsat, M., Badnava, S., Barati, M.R. and Hamouda, A.M.S. (2020b), "Nonlinear dynamic characteristics of nonlocal multi-phase magneto-electro-elastic nano-tubes with different piezoelectric constituents", Appl. Physics A, 126(8), 1-16. https://doi.org/10.1007/s00339-020-03743-8.   DOI
8 Mirjavadi, S.S., Forsat, M., Mollaee, S., Barati, M.R., Afshari, B. M. and Hamouda, A.M.S. (2020e), "Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression", Comput. Concrete, 26(1), 21-30. https://doi.org/10.12989/cac.2020.26.1.021.   DOI
9 Chen, F., Jin, Z., Wang, E., Wang, L., Jiang, Y., Guo, P. and He, X. (2021b), "Relationship model between surface strain of concrete and expansion force of reinforcement rust", Sci. Reports, 11(1), 1-11. https://doi.org/10.1038/s41598-021-83376-w.   DOI
10 Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020c), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.   DOI
11 Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020f), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047.   DOI
12 Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020g), "Investigating nonlinear forced vibration behavior of multi-phase nanocomposite annular sector plates using Jacobi elliptic functions", Steel Compos. Struct., 36(1), 87-101. https://doi.org/10.12989/scs.2020.36.1.087.   DOI
13 Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020h), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.   DOI
14 Mirjavadi, S.S., Forsat, M., Badnava, S. and Barati, M.R. (2020a), "Analyzing nonlocal nonlinear vibrations of two-phase geometrically imperfect piezo-magnetic beams considering piezoelectric reinforcement scheme", J. Strain Anal. Eng. Design, 55(7-8), 258-270. https://doi.org/10.1177%2F0309324720917285.   DOI
15 Fenjan, R.M., Faleh, N.M. and Ahmed, R.A. (2020d), "Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites", Adv. Nano Res., 9(3), 147-156. https://doi.org/10.12989/anr.2020.9.3.147.   DOI
16 Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020a), "Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects", Adv. Aircraft Spacecraft Sci., 7(2), 169-186. https://doi.org/10.12989/aas.2020.7.2.169.   DOI
17 Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020b), "Nonlinear vibration characteristics of refined higher-order multi-phase piezo-magnetic nanobeams", Eur. Phys. J. Plus, 135(5), 439. https://doi.org/10.1140/epjp/s13360-020-00399-4.   DOI
18 Ebrahimi, F. and Barati, M.R. (2019a), "Hygrothermal effects on static stability of embedded single-layer graphene sheets based on nonlocal strain gradient elasticity theory", J. Therm. Stresses, 42(12), 1535-1550. https://doi.org/10.1080/01495739.2019.1662352.   DOI
19 Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020e), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631.   DOI
20 Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Hani, F.M. (2020f). "Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation", Smart Struct. Syst., 26(1), 77-87. https://doi.org/10.12989/sss.2020.26.1.077.   DOI
21 Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2021), "Post-buckling analysis of imperfect nonlocal piezoelectric beams under magnetic field and thermal loading", Struct. Eng. Mech., 78(1), 15-22. https://doi.org/10.12989/sem.2021.78.1.015.   DOI
22 Fenjan, R.M., Ahmed, R.A., Hamad, L.B. and Faleh, N.M. (2020c), "A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads", Adv. Comput. Design, 5(4), 349-362. https://doi.org/10.12989/acd.2020.5.4.349.   DOI
23 Hou, C.C., Simos, T.E. and Famelis, I.T. (2020), "Neural network solution of pantograph type differential equations", Math. Method. Appl. Sci., 43(6), 3369-3374. https://doi.org/10.1002/mma.6126.   DOI
24 Dai, Z., Xie, J., Chen, Z., Zhou, S., Liu, J., Liu, W. and Ren, X. (2021), "Improved energy storage density and efficiency of (1-x) Ba0. 85Ca0. 15Zr0. 1Ti0. 9O3-xBiMg2/3Nb1/3O3 lead-free ceramics", Chem. Eng. J., 410, 128341. https://doi.org/10.1016/j.cej.2020.128341.   DOI
25 Fang, J., Liu, C., Simos, T.E. and Famelis, I.T. (2020), "Neural network solution of single-delay differential equations", Mediterranean J. Math., 17(1), 1-15. https://doi.org/10.1007/s00009-019-1452-5.   DOI
26 Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Hani, F.M. (2020g), "Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach", Struct. Monit. Maint., 7(2), 69-84. https://doi.org/10.12989/smm.2020.7.2.069.   DOI
27 Huang, Z.Q., Yi, S.H., Chen, H.X. and He, X.Q. (2021), "Parameter analysis of damaged region for laminates with matrix defects", J. Sandw. Struct. Mater., 23(2), 580-620. https://doi.org/10.1177%2F1099636219842290.   DOI
28 Khaniki, H.B. and Hosseini-Hashemi, S. (2017), "The size-dependent analysis of multilayered microbridge systems under a moving load/mass based on the modified couple stress theory", Eur. Phys. J. Plus, 132(5), 200. https://doi.org/10.1140/epjp/i2017-11466-0.   DOI
29 Kovalnogov, V. N., Simos, T. E. and Tsitouras, C. (2021), "Runge-Kutta pairs suited for SIR-type epidemic models", Math. Method. Appl. Sci., 44(6), 5210-5216. https://doi.org/10.1002/mma.7104.   DOI
30 Li, D.S., Yuan, Y.Q., Li, K.P. and Li, H.N. (2017), "Experimental axial force identification based on modified Timoshenko beam theory", Struct. Monit. Maint., 4(2), 153-173. https://doi.org/10.12989/smm.2017.4.2.153.   DOI
31 Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014.   DOI
32 Medvedeva, M., Simos, T.E., Tsitouras, C. and Katsikis, V. (2021a), "Direct estimation of SIR model parameters through second-order finite differences", Math. Method. Appl. Sci., 44(5), 3819-3826. https://doi.org/10.1002/mma.6985.   DOI
33 Li, T., Dai, Z., Yu, M. and Zhang, W. (2021), "Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths", Eng. Appl. Comput. Fluid Mech., 15(1), 549-560. https://doi.org/10.1080/19942060.2021.1895321.   DOI
34 Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020j), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.   DOI
35 Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020k), "Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection", Adv. Concrete Constr., 9(4), 397-406. https://doi.org/10.12989/acc.2020.9.4.397.   DOI
36 Mou, B. and Bai, Y. (2018), "Experimental investigation on shear behavior of steel beam-to-CFST column connections with irregular panel zone", Eng. Struct., 168, 487-504. https://doi.org/10.1016/j.engstruct.2018.04.029.   DOI
37 Lou, J., He, L., Wu, H. and Du, J. (2016), "Pre-buckling and buckling analyses of functionally graded microshells under axial and radial loads based on the modified couple stress theory", Compos. Struct., 142, 226-237. https://doi.org/10.1016/j.compstruct.2016.01.083.   DOI
38 Martinez-Criado, G. (2016), "Application of micro-and nanobeams for materials science", Synchrotron light sources and free-electron lasers: accelerator physics, instrumentation and science applications, 1505-1539. https://doi.org/10.1007/978-3-319-14394-1_46.
39 Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.   DOI
40 Medvedeva, M.A., Katsikis, V. N., Mourtas, S.D. and Simos, T.E. (2021b), "Randomized time-varying knapsack problems via binary beetle antennae search algorithm: Emphasis on applications in portfolio insurance", Math. Method. Appl. Sci., 44(2), 2002-2012. https://doi.org/10.1002/mma.6904.   DOI
41 Yahiaoui, M., Tounsi, A., Fahsi, B., Bouiadjra, R.B. and Benyoucef, S. (2018), "The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams", Struct. Eng. Mech., 68(1), 053. https://doi.org/10.12989/sem.2018.68.1.053.   DOI
42 Nami, M.R. and Janghorban, M. (2014), "Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant", Compos. Struct., 111, 349-353. https://doi.org/10.1016/j.compstruct.2014.01.012.   DOI
43 Raheef, K.M., Ahmed, R.A., Nayeeif, A.A., Fenjan, R.M. and Faleh, N.M. (2021), "Analyzing dynamic response of nonlocal strain gradient porous beams under moving load and thermal environment", Geomech. Eng., 26(1), 89-99. https://doi.org/10.12989/gae.2021.26.1.089.   DOI
44 Wang, L., Peng, Y., Xie, Y., Chen, B. and Du, Y. (2021), "A new iteration regularization method for dynamic load identification of stochastic structures", Mech, Syst, Signal Pr., 156, 107586. https://doi.org/10.1016/j.ymssp.2020.107586.   DOI
45 She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B. and Xiao, W.S. (2018), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063.   DOI
46 Simsek, M. (2010), "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1721-1732. https://doi.org/10.1016/j.ijengsci.2010.09.027.   DOI
47 Shahsavari, D., Karami, B., Janghorban, M. and Li, L. (2017), "Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment", Mater. Res. Express, 4(8), 085013. https://doi.org/10.1088/2053-1591/aa7d89.   DOI
48 Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.   DOI
49 Tu, J., Zhang, J., Zhu, Q., Liu, F. and Luo, W. (2018), "The actuation equation of macro-fiber composite coupled plate and its active control over the vibration of plate and shell", Struct. Monit. Maint., 5(2), 297-311. https://doi.org/10.12989/smm.2018.5.2.297.   DOI
50 Xu, X., Karami, B. and Shahsavari, D. (2021), "Time-dependent behavior of porous curved nanobeam", Int. J. Eng. Sci., 160, 103455. https://doi.org/10.1016/j.ijengsci.2021.103455.   DOI
51 Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint.e, 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.   DOI
52 Zhang, J., Wang, M., Tang, Y., Ding, Q., Wang, C., Huang, X. and Yan, F. (2021c), "Angular velocity measurement with improved scale factor based on a wideband-tunable optoelectronic oscillator", IEEE T. Instrum. Measurement, 70, 1-9. https://doi.org/10.1109/TIM.2021.3067183.   DOI
53 Zhang, B., He, Y., Liu, D., Shen, L. and Lei, J. (2015), "Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory", Compos. Struct., 119, 578-597. https://doi.org/10.1016/j.compstruct.2014.09.032.   DOI
54 Zhang, T., Wu, X., Shaheen, S.M., Rinklebe, J., Bolan, N.S., Ali, E. F. and Tsang, D.C. (2021b), "Effects of microorganism-mediated inoculants on humification processes and phosphorus dynamics during the aerobic composting of swine manure", J. Hazardous Mater., 416, 125738. https://doi.org/10.1016/j.jhazmat.2021.125738.   DOI
55 Abouelregal, A.E. and Zenkour, A.M. (2017), "Dynamic response of a nanobeam induced by ramp-type heating and subjected to a moving load", Microsyst. Technol., 23(12), 5911-5920. https://doi.org/10.1007/s00542-017-3365-1.   DOI
56 Akgoz, B. and Civalek, O. (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226(7), 2277-2294. https://doi.org/10.1007/s00707-015-1308-4.   DOI
57 Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.   DOI
58 Zeighampour, H. and Shojaeian, M. (2017), "Buckling analysis of functionally graded sandwich cylindrical micro/nanoshells based on the couple stress theory", J. Sandw. Struct. Mater., 1099636217703912. https://doi.org/10.1177%2F1099636217703912.   DOI
59 Zhao, X., Zhu, W.D. and Li, Y.H. (2020b), "Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's functions", J. Sound Vib., 481, 115407. https://doi.org/10.1016/j.jsv.2020.115407.   DOI
60 Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020i), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concrete, 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.   DOI
61 Shyamala, P., Mondal, S. and Chakraborty, S. (2018), "Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm", Struct. Monit. Maint., 5(2), 243-260. https://doi.org/10.12989/smm.2018.5.2.243.   DOI
62 Zhao, X., Chen, B., Li, Y.H., Zhu, W.D., Nkiegaing, F.J. and Shao, Y.B. (2020a), "Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green's functions", J. Sound Vib., 464, 115001. https://doi.org/10.1016/j.jsv.2019.115001.   DOI
63 Zhang, C., Jin, Q., Song, Y., Wang, J., Sun, L., Liu, H. and Guo, S. (2021a), "Vibration analysis of a sandwich cylindrical shell in hygrothermal environment", Nanotechnol. Rev., 10(1), 414-430. https://doi.org/10.1515/ntrev-2021-0026.   DOI
64 Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Hamouda, A.M.S. (2020d), "Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners", Struct. Eng. Mech., 75(6), 701-711. https://doi.org/10.12989/sem.2020.75.6.701.   DOI
65 Zeighampour, H. and Beni, Y.T. (2014), "Cylindrical thin-shell model based on modified strain gradient theory", Int. J. Eng. Sci., 78, 27-47. https://doi.org/10.1016/j.ijengsci.2014.01.004.   DOI
66 Yan, D., Wang, W. and Chen, Q. (2020), "Fractional-order modeling and nonlinear dynamic analyses of the rotor-bearing-seal system", Chaos, Solitons & Fractals, 133, 109640. https://doi.org/10.1016/j.chaos.2020.109640.   DOI
67 Berrabah, H.M., Tounsi, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351.   DOI
68 Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369.   DOI
69 Barati, M.R. (2018), "Vibration analysis of porous FG nanoshells with even and uneven porosity distributions using nonlocal strain gradient elasticity", Acta Mechanica, 229(3), 1183-1196. https://doi.org/10.1007/s00707-017-2032-z.   DOI
70 Barati, M.R. and Zenkour, A. (2019), Investigating instability regions of harmonically loaded refined shear deformable inhomogeneous nanoplates", Iran J. Sci. Technol. T. Mech. Eng., 43(3), 393-404. https://doi.org/10.1007/s40997-018-0215-4.   DOI
71 Chen, F.X., Zhong, Y.C., Gao, X.Y., Jin, Z.Q., Wang, E.D., Zhu, F. P. and He, X.Y. (2021a), "Non-uniform model of relationship between surface strain and rust expansion force of reinforced concrete", Sci. Reports, 11(1), 1-9. https://doi.org/10.1038/s41598-021-88146-2.   DOI