Browse > Article
http://dx.doi.org/10.12989/scs.2021.40.4.511

Analytical solutions of the temperature increment in skin tissues caused by moving heating sources  

Hobiny, Aatef D. (Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Mathematics Department, King Abdulaziz University)
Abbas, Ibrahim A. (Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Mathematics Department, King Abdulaziz University)
Publication Information
Steel and Composite Structures / v.40, no.4, 2021 , pp. 511-516 More about this Journal
Abstract
In this paper, mathematical bioheat transfer model in skin tissues in the bounded domain due to moving heat source are considered. The thermal damage to the tissues is totally evaluated by the denatured protein ranges by the Arrhenius formulation. The temporal complete solutions in Laplace time domain obtained by using the inversion scheme of the Laplace transform, to obtain the general solution (exact solution) for the increment of temperature. The numerical result of temperature and the thermal injurie are graphically demonstrated. In conclusions, parametric analysis are devoted to the identifications of appropriates procedures for choosing serious designs variables to reach the effectives thermal in hyperthermias treatments.
Keywords
bioheat transfer without energy dissipations; laplace transforms; skin tissues; thermal damages;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abbas, I. (2006), "Natural frequencies of a poroelastic hollow cylinder", Acta Mechanica, 186(1-4), 229-237. https://doi.org/10.1007/s00707-006-0314-y.   DOI
2 Abbas, I.A. (2007), "Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity", Forschung im Ingenieurwesen. 71(3-4), 215-222. https://doi.org/10.1007/s10010-007-0060-x.   DOI
3 Abbas, I.A. (2014), "The effects of relaxation times and a moving heat source on a two-temperature generalized thermoelastic thin slim strip", Can. J. Phys., 93(5), 585-590. https://doi.org/10.1139/cjp-2014-0387.   DOI
4 Abbas, I.A., Abo-El-Nour, N. and Othman, M.I. (2011), "Generalized magneto-thermoelasticity in a fiber-reinforced anisotropic half-space", Int. J. Thermophys., 32(5), 1071-1085. https://doi.org/10.1007/s10765-011-0957-3.   DOI
5 Eftekhari, S.A. (2018), "A coupled ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions", Steel Compos. Struct., 28(6), 655-670. http://dx.doi.org/10.12989/scs.2018.28.6.655.   DOI
6 Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions due to hall current in transversely isotropic thermoelastic with and without energy dissipation with two temperatures and rotation", J. Solid Mech., 8(4), 840-858.
7 Abbas, I.A. and Alzahrani, F.S. (2016), "Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse", Steel Compos. Struct., 21(4), 791-803. https://doi.org/10.12989/scs.2016.21.4.791.   DOI
8 Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103.   DOI
9 Andreozzi, A., Brunese, L., Iasiello, M., Tucci, C. and Vanoli, G.P. (2019), "Modeling heat transfer in tumors: a review of thermal therapies", Annal. Bio. Eng., 47(3), 676-693. https://doi.org/10.1007/s10439-018-02177-x.   DOI
10 Biot, M.A. (1956), "Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range", J. Acoust. Soc. Am., 28(2), 179-191. https://doi.org/10.1121/1.1908241.   DOI
11 Ezzat, M.A. and El-Bary, A.A. (2017), "A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer", Steel Compos. Struct., 25(2), 177-186. http://dx.doi.org/10.12989/scs.2017.25.2.177   DOI
12 Othman, M.I. and Abbas, I.A. (2012), "Generalized thermoelasticity of thermal-shock problem in a nonhomogeneous isotropic hollow cylinder with energy dissipation", Int. J. Thermophys., 33(5), 913-923. https://doi.org/10.1007/s10765-012-1202-4.   DOI
13 Hobiny, A. and Abbas, I. (2019), "Analytical solutions of fractional bioheat model in a spherical tissue", Mech. Based Des. Struct. Mach., 1-10. https://doi.org/10.1080/15397734.2019.1702055.   DOI
14 Iasiello, M., Andreozzi, A., Bianco, N. and Vafai, K. (2019), "The porous media theory applied to radiofrequency catheter ablation", Int. J. Numer. Method. Heat Fluid Fl., https://doi.org/10.1108/HFF-11-2018-0707.   DOI
15 Iasiello, M., Vafai, K., Andreozzi, A. and Bianco, N. (2019), "Hypo-and hyperthermia effects on LDL deposition in a curved artery", Comput. Therm. Sci., 11(1-2). https://dx.doi.org/10.1615/ComputThermalScien.2018024754   DOI
16 Karageorghis, A., Lesnic, D. and Marin, L. (2014), "A moving pseudo-boundary MFS for void detection in two-dimensional thermoelasticity", Int. J. Mech. Sci., 88, 276-288. https://doi.org/10.1016/j.ijmecsci.2014.05.015.   DOI
17 Green, A. and Naghdi, P. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31(3), 189-208. https://doi.org/10.1007/BF00044969.   DOI
18 Henriques Jr, F. and Moritz, A. (1947), "Studies of thermal injury: I. The conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation", Am. J. Pathology. 23(4), 530.
19 Hobiny, A., Alzahrani, F.S. and Abbas, I. (2020), "Three-phase lag model of thermo-elastic interaction in a 2D porous material due to pulse heat flux", Int. J. Numer. Method. Heat Fluid Fl., https://doi.org/10.1108/HFF-03-2020-0122.   DOI
20 Kahya, V. and Turan, M. (2018), "Vibration and buckling of laminated beams by a multi-layer finite element model", Steel Compos. Struct., 28(4), 415-426. https://doi.org/10.12989/scs.2018.28.4.415.   DOI
21 Kumar, C.S. and Mohammad, F. (2011), "Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery", Adv. Drug Delivery Reviews, 63(9), 789-808. https://doi.org/10.1016/j.addr.2011.03.008.   DOI
22 Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation", Steel Compos. Struct., 32(6), 779-793. http://dx.doi.org/10.12989/scs.2019.32.6.779.   DOI
23 Marin, M. (1997), "Cesaro means in thermoelasticity of dipolar bodies", Acta mechanica. 122(1-4), 155-168. https://doi.org/10.1007/BF01181996.   DOI
24 Gonzalez-Suarez, A. and Berjano, E. (2015), "Comparative analysis of different methods of modeling the thermal effect of circulating blood flow during RF cardiac ablation", IEEE T. Bio. Eng., 63(2), 250-259. https://dx.doi.org/10.1109/TBME.2015.2451178.   DOI
25 Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proc. Roy. Soc. London. Series A: Math. Phys. Sci., 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012.   DOI
26 Hassan, M., Marin, M., Ellahi, R. and Alamri, S.Z. (2018), "Exploration of convective heat transfer and flow characteristics synthesis by Cu-Ag/water hybrid-nanofluids", Heat Transfer Res., 49(18). https://dx.doi.org/10.1615/HeatTransRes.2018025569.   DOI
27 Ho, Y.J., Wu, C.C., Hsieh, Z.H., Fan, C.H. and Yeh, C.K. (2018), "Thermal-sensitive acoustic droplets for dual-mode ultrasound imaging and drug delivery", J. Controlled Release, 291 26-36. https://doi.org/10.1016/j.jconrel.2018.10.016.   DOI
28 Kumar, R. and Chawla, V. (2013), "Reflection and refraction of plane wave at the interface between elastic and thermoelastic media with three-phase-lag model", Int. Commun. Heat Mass Transfer, 48, 53-60. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.013.   DOI
29 Abbas, I.A. and Youssef, H.M. (2013), "Two-temperature generalized thermoelasticity under ramp-type heating by finite element method", Meccanica, 48(2), 331-339. https://doi.org/10.1007/s11012-012-9604-8   DOI
30 Mondal, S., Sur, A. and Kanoria, M. (2019), "Transient heating within skin tissue due to time-dependent thermal therapy in the context of memory dependent heat transport law", Mech. Based Des. Struct. Mach., 1-15. https://doi.org/10.1080/15397734.2019.1686992.   DOI
31 Labonte, S. (1994), "Numerical model for radio-frequency ablation of the endocardium and its experimental validation", IEEE T. Biomed. Eng., 41(2), 108-115. https://doi.org/10.1109/10.284921.   DOI
32 Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4), 439-451. http://dx.doi.org/10.12989/scs.2018.27.4.439.   DOI
33 Abbas, I.A. and Zenkour, A.M. (2014), "Dual-phase-lag model on thermoelastic interactions in a semi-infinite medium subjected to a ramp-type heating", J. Comput. Theor. Nanosci., 11(3), 642-645. https://doi.org/10.1166/jctn.2014.3407.   DOI
34 Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., 22(3), 567-587. https://doi.org/10.12989/scs.2016.22.3.567.   DOI
35 Mahjoob, S. and Vafai, K. (2009), "Analytical characterization of heat transport through biological media incorporating hyperthermia treatment", Int. J. Heat Mass Transfer., 52(5-6), 1608-1618. https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.038.   DOI
36 Marin, M. and Craciun, E. (2017), "Uniqueness results for a boundary value problem in dipolar thermoelasticity to model composite materials", Compos. Part B: Eng., 126, 27-37. https://doi.org/10.1016/j.compositesb.2017.05.063.   DOI
37 Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micropolar bodies", Aip Adv., 5(3), 037113. https://doi.org/10.1063/1.4914912.   DOI
38 Marin, M. and Ochsner, A. (2017), "The effect of a dipolar structure on the Holder stability in Green-Naghdi thermoelasticity", Continuum Mech. Therm., 29(6), 1365-1374. https://doi.org/10.1007/s00161-017-0585-7.   DOI
39 Mitchell, J.W., Galvez, T.L., Hengle, J., Myers, G.E. and Siebecker, K.L. (1970), "Thermal response of human legs during cooling", J. Appl. Physiology, 29(6), 859-865. https://doi.org/10.1152/jappl.1970.29.6.859.   DOI
40 Ahmadikia, H., Fazlali, R. and Moradi, A. (2012), "Analytical solution of the parabolic and hyperbolic heat transfer equations with constant and transient heat flux conditions on skin tissue", Int. Commun. Heat Mass Transfer, 39(1), 121-130. https://doi.org/10.1016/j.icheatmasstransfer.2011.09.016.   DOI
41 Andreozzi, A., Iasiello, M. and Netti, P.A. (2019), "A thermoporoelastic model for fluid transport in tumour tissues", J. Roy. Soc. Interface, 16(154), 20190030. https://doi.org/10.1098/rsif.2019.0030.   DOI
42 Biot, M.A. (1941), "General theory of three-dimensional consolidation", J. Appl. Phys., 12(2), 155-164. http://dx.doi.org/10.1063/1.1712886.   DOI
43 Charny, C.K. (1992), Mathematical models of bioheat transfer, Elsevier
44 Debnath, L. and Bhatta, D. (2014), Integral transforms and their applications, Chapman and Hall/CRC.
45 Egred, M. and Brilakis, E.S. (2020), "Excimer laser coronary angioplasty (ELCA): fundamentals, mechanism of action, and clinical applications", J. Invasive Cardiol, 32(2), 27-35.
46 Ezzat, M. and El-Bary, A. (2017), "Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories", Steel Compos. Struct., 24(3), 297-307. http://dx.doi.org/10.12989/scs.2017.24.3.297.   DOI
47 Othman, M.I. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under GN theory", Results in Phys., 7, 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.   DOI
48 Pennes, H.H. (1948), "Analysis of tissue and arterial blood temperatures in the resting human forearm", J. Appl. Physiology, 1(2), 93-122. https://doi.org/10.1152/jappl.1948.1.2.93.   DOI
49 Quintanilla, R. and Racke, R. (2008), "A note on stability in three-phase-lag heat conduction", Int. J. Heat Mass Transfer., 51(1-2), 24-29. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045.   DOI
50 Kaur, H. and Lata, P. (2020), "Effect of thermal conductivity on isotropic modified couple stress thermoelastic medium with two temperatures", Steel Compos. Struct., 34(2), 309-319. https://doi.org/10.12989/scs.2020.34.2.309.   DOI
51 Saeed, T. and Abbas, I. (2020), "Finite element analyses of nonlinear DPL bioheat model in spherical tissues using experimental data", Mech. Based Des. Struct. Mach., 1-11. https://doi.org/10.1080/15397734.2020.1749068.   DOI
52 Stehfest, H. (1970), "Algorithm 368: Numerical inversion of Laplace transforms [D5]", Commun. ACM. 13(1), 47-49. https://doi.org/10.1145/361953.361969.   DOI
53 Xu, F., Seffen, K. and Lu, T. (2008), "Non-Fourier analysis of skin biothermomechanics", Int. J. Heat Mass Transfer., 51(9), 2237-2259. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.024.   DOI
54 Zenkour, A.M. and Abbas, I.A. (2014), "A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties", Int. J. Mech. Sci., 84, 54-60. https://doi.org/10.1016/j.ijmecsci.2014.03.016.   DOI
55 Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. https://doi.org/10.1063/1.532809.   DOI
56 Moritz, A.R. and Henriques Jr, F. (1947), "Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns", Am. J. Pathology, 23(5), 695.
57 Noroozi, M.J. and Goodarzi, M. (2017), "Nonlinear analysis of a non-Fourier heat conduction problem in a living tissue heated by laser source", Int. J. Biomathematics, 10(8), 1750107. https://doi.org/10.1142/S1793524517501078.   DOI
58 Kumar, D. and Rai, K. (2020), "Three-phase-lag bioheat transfer model and its validation with experimental data", Mech. Based Des. Struct. Mach., 1-15. https://doi.org/10.1080/15397734.2020.1779741.   DOI
59 Gabay, I., Abergel, A., Vasilyev, T., Rabi, Y., Fliss, D.M. and Katzir, A. (2011), "Temperature-controlled two-wavelength laser soldering of tissues", Laser. Surg. Med.. 43(9), 907-913. http://dx.doi.org/10.1002/lsm.21123.   DOI
60 Zhou, J., Chen, J. and Zhang, Y. (2009), "Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation", Comput. Biology Medicine, 39(3), 286-293. https://doi.org/10.1016/j.compbiomed.2009.01.002.   DOI