Browse > Article
http://dx.doi.org/10.12989/scs.2021.40.4.495

Experimental study on steel hysteretic column dampers for seismic retrofit of structures  

Javidan, Mohammad Mahdi (Department of Civil & Architectural Engineering, Sungkyunkwan University)
Chun, Seungho (Department of Civil & Architectural Engineering, Sungkyunkwan University)
Kim, Jinkoo (Department of Civil & Architectural Engineering, Sungkyunkwan University)
Publication Information
Steel and Composite Structures / v.40, no.4, 2021 , pp. 495-509 More about this Journal
Abstract
In this research, the seismic performance of a steel column damper is evaluated using cyclic loading tests of two one-story one-bay reinforced concrete (RC) frames before and after retrofit. The theoretical formulation and design procedure of the damper are explained first and then the details of the tests are described. The seismic performances of the test frames are evaluated in terms of hysteretic behavior, energy dissipation, crack pattern, failure mechanism, and damper behavior. The analytical model of the damper is established and verified using the experimental data. In order to further investigate the applicability of the developed damper for seismic retrofit, a case-study structure is chosen and retrofitted using the proposed damper. The seismic performance of the structure is evaluated and compared before and after retrofit in detail using pushover, nonlinear time-history, and fragility analyses. The results show that the presented damper can efficiently reduce inter-story drifts and damage of the structure. The details of modeling techniques and simulations given in this study can provide guidelines and insight into nonlinear analysis and retrofit of RC structures.
Keywords
fragility analysis; energy dissipation devices; hysteretic dampers; seismic performance; seismic retrofit; pushover analysis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 ATC (1996). Seismic Evaluation and Retrofit of Concrete
2 Mohammadi, M., Kafi, M.A., Kheyroddin, A., Ronagh, H.R. and Rashidi, M. (2020b), "Experimental and numerical investigation of innovative composite buckling-restrained fuse", Lecture Notes in Civil Engineering, 113-121. https://doi.org/10.1016/j.istruc.2019.07.014.
3 Bitaraf, M. and Barroso, L.R. (2009), "Structural Performance Improvement Using MR Dampers with Adaptive Control Method", American Control Conference, St. Louis, 598-603.
4 Park, J., Lee, J. and Kim, J. (2012), "Cyclic test of buckling restrained braces composed of square steel rods and steel tube", Steel Compos. Struct., 13(5), 423-436. https://doi.org/10.12989/scs.2012.13.5.423.   DOI
5 KBC (2016), Korean Building Code. Korean Ministry of Construction, Seoul.
6 Gorji Azandariani, M., Rousta, A.M., Usefvand, E., Abdolmaleki, H. and Gorji Azandariani, A. (2021). "Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings", Structures, 29, 534-548. https://doi.org/10.1016/j.istruc.2020.11.041.   DOI
7 PEER (2014), "PEER NGA Database." PEER Ground Motion Database, .
8 Shayanfar, M.A. and Javidan, M.M. (2017), "Progressive Collapse-Resisting Mechanisms and Robustness of RC Frame-Shear Wall Structures", J. Perform. Constr. Fac., 31(5), 04017045. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001012.   DOI
9 Sigaher, A.N. and Constantinou, M.C. (2003), "Scissor-Jack-Damper Energy Dissipation System." Earthquake Spectra, 19(1), 133-158. https://doi.org/10.1193/1.1540999   DOI
10 Whittaker, A.S., Bertero, V.V., Thompson, C.L. and Alonso, L.J. (1991), "Seismic testing of steel plate energy dissipation devices", Earthq. Spectra, 7(4), 563-604. https://doi.org/10.1193/1.1585644.   DOI
11 Usefi, N., Ronagh, H., Kildashti, K. and Samali, B. (2018), "Macro/micro analysis of cold-formed steel members using Abaqus and OpenSee", Proceedings of the 13th International Conference on Steel, Space and Composite Structures, Perth.
12 ACI (2005), Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary (ACI 374.1-05). American Concrete Institute, Farmington Hills, MI.
13 Celik, O.C. and Ellingwood, B.R. (2009). "Seismic Risk Assessment of Gravity Load Designed Reinforced Concrete Frames Subjected to Mid-America Ground Motions", J. Struct. Eng. Am. Soc. Civil Engineers, 135(4), 414-424. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:4(414).   DOI
14 Naeem, A. and Kim, J. (2019b), "Seismic performance evaluation of a multi-slit damper", Eng. Struct., 189, 332-346. https://doi.org/10.1016/j.engstruct.2019.03.107.   DOI
15 Lee, D.G., Hong, S. and Kim, J. (2002), "Efficient siesmic analysis of building structures with added viscoelastic dampers." Eng. Struct., 24(9), 1217-1227. https://doi.org/10.1016/S0141-0296(02)00058-5.   DOI
16 FEMA (2009), Quantification of building seismic performance factors, FEMA P695. Federal Emergency Management Agency, Washington, DC.
17 Agha Beigi, H., Christopoulos, C., Sullivan, T. and Calvi, M. (2015), "Seismic response of a case study soft story frame retrofitted using a GIB system", Earthq. Eng. Struct. D., 44(7), 997-1014. https://doi.org/10.1002/eqe.2496.   DOI
18 Menegotto, M. and Pinto, P. E. (1973), "Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and nonelastic behavior of elements under combined normal force and bending", IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, Lisbon, 15-22. https://doi.org/10.5169/seals-13741.   DOI
19 Naeem, A and Kim, J. (2019a), "Seismic retrofit of structures using rotational friction dampers with restoring force", Adv. Struct. Eng., 23(16), 3525-3540. https://doi.org/10.1177/1369433220939213.   DOI
20 Oncu-Davas, S. and Alhan, C. (2019a), "Reliability of semi-active seismic isolation under near-fault earthquakes", Mech. Syst. Signal Pr., 114, 146-164. https://doi.org/10.1016/j.ymssp.2018.04.045.   DOI
21 Javidan, M.M. and Kim, J. (2019), "Seismic retrofit of soft-first story structures using rotational friction dampers", J. Struct. Eng., 145(12), 04019162. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002433.   DOI
22 Oncu-Davas, S. and Alhan, C. (2019b), "Probabilistic behavior of semi-active isolated buildings under pulse-like earthquakes", Smart Struct. Syst., 23(3), 227-242. https://doi.org/10.12989/sss.2019.23.3.227.   DOI
23 Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2020a), "Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36(2), 163-177. https://doi.org/10.12989/scs.2020.36.2.163.   DOI
24 Gorji Azandariani, M., Gorji Azandariani, A., and Abdolmaleki, H. (2020). "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)." Journal of Constructional Steel Research, Elsevier Ltd, 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145   DOI
25 Javidan, M.M. and Kim, J. (2020b), "Experimental and numerical sensitivity assessment of viscoelasticity for polymer composite materials", Scientific Reports, Nature Research, 10(1), 1-9. https://doi.org/10.1038/s41598-020-57552-3.   DOI
26 Javidan, M.M., Eskandari Nasab, M.S. and Kim, J. (2021), "Fulls-cale experimental tests of two-story frames retrofitted with steel plate multi-slit dampers", Steel Compos. Struct., 39(5), 645-664. https://doi.org/10.12989/scs.2021.39.5.645.   DOI
27 Kim, J. (2019), "Development of seismic retrofit devices for building structures", Int. J. High-Rise Build., 8(3), 221-227. https://doi.org/10.21022/IJHRB.2019.8.3.221.   DOI
28 Kim, J., Kim, M. and Eldin, M.N. (2017). "Optimal distribution of steel plate slit dampers for seismic retrofit of structures", Steel Compos. Struct., 25(4), 473-484. https://doi.org/10.12989/scs.2017.25.4.473.   DOI
29 Kreslin, M. and Fajfar, P. (2010). "Seismic evaluation of an existing complex RC building", Bull. Earthq. Eng., 8(2), 363-385. https://doi.org/10.1007/s10518-009-9155-0   DOI
30 Kim, J., Park, J. and Kim, S. D. (2009). "Seismic behavior factors of buckling-restrained braced frames", Struct. Eng. Mech., 33(3), 261-284. https://doi.org/10.12989/sem.2009.33.3.261.   DOI
31 Ilki, A., Peker, O., Karamuk, E., Demir, C. and Kumbasar, N. (2008). "FRP retrofit of low and medium strength circular and rectangular reinforced concrete columns", J. Mater. Civil Eng., 20(2), 169-188. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:2(169).   DOI
32 Bitaraf, M., Barroso, L.R. and Hurlebaus, S. (2010), "Adaptive Control to Mitigate Damage Impact on Structural Response." Journal of Intelligent Material Systems and Structures, SAGE Publications Sage UK: London, England, 21(6), 607-619. https://doi.org/10.1177/1045389X10361993.   DOI
33 Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), OpenSees command language manual.
34 Naeem, A. and Kim, J. (2021), "Seismic retrofit of 3000 kVA power transformer using friction dampers and prestressed tendons", Structures, 32, 641-650.   DOI
35 Kim, J. and Shin, H. (2017), "Seismic loss assessment of a structure retrofitted with slit-friction hybrid dampers", Eng. Struct., 130, 336-350. https://doi.org/10.1016/j.engstruct.2016.10.052.   DOI
36 Yousef-beik, S.M.M., Veismoradi, S., Zarnani, P. and Quenneville, P. (2020b), "A new self-centering brace with zero secondary stiffness using elastic buckling", J. Constr. Steel Res., 169, 106035. https://doi.org/10.1016/j.jcsr.2020.106035.   DOI
37 Kim, J., Choi, H. and Chung, L. (2004), "Energy-based seismic design of structures with buckling-restrained braces", Steel Compos. Struct., 4(6), 437-452. https://doi.org/10.12989/scs.2004.4.6.437.   DOI
38 ASCE (2013), Seismic rehabilitation of existing buildings. ASCE/SEI 41-13, ASCE, Reston, VA.
39 Choi, H. and Kim, J. (2010). "New installation scheme for viscoelastic dampers using cables", Can. J. Civil Eng., 37(9), 1201-1211. https://doi.org/10.1139/L10-068.   DOI
40 Tsai, C.S., Chen, K.C. and Chen, C.S. (1998). "Seismic resistibility of high-rise buildings with combined velocity-dependent and velocity-independent devices", ASME Pressure Vessels and Piping Conference, San Diego, CA, 103-110.
41 Xu, Z.D., Ge, T. and Liu, J. (2020). "Experimental and Theoretical Study of High-Energy Dissipation-Viscoelastic Dampers Based on Acrylate-Rubber Matrix", J. Eng. Mech., 146(6), 4020057. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001802.   DOI
42 Yousef-beik, S.M.M., Bagheri, H., Veismoradi, S., Zarnani, P., Hashemi, A. and Quenneville, P. (2020a), "Seismic performance improvement of conventional timber brace using re-centring friction connection", Structures, 26, 958-968. https://doi.org/10.1016/j.istruc.2020.05.029.   DOI
43 Kim, J. and Bang, S. (2002), "Optimum distribution of added viscoelastic dampers for mitigation of torsional responses of plan-wise asymmetric structures", Eng. Struct., 24(10), 1257-1269. https://doi.org/10.1016/S0141-0296(02)00046-9.   DOI
44 Javidan, M.M. and Kim, J. (2020a), "Steel hysteretic column dampers for seismic retrofit of soft-first-story structures", Steel Compos. Struct., 37(3), 259-272. https://doi.org/10.12989/scs.2020.37.3.259.   DOI
45 ACI (American Concrete Institute). (2014), Building Code Requirements for Structural Concrete (ACI 318M-14) and Commentary (ACI 318RM-14). American Concrete Institute (ACI), Farmington Hills, MI.
46 Amini, F., Bitaraf, M., Eskandari Nasab, M.S. and Javidan, M.M. (2018), "Impacts of soil-structure interaction on the structural control of nonlinear systems using adaptive control approach", Eng. Struct., 157, 1-13. https://doi.org/10.1016/j.engstruct.2017.11.071.   DOI
47 Buildings. Applied Technology Council, Redwood City, CA. Bahrani, M.K., Nooralizadeh, A., Usefi, N. and Zargaran, M. (2019). "Seismic evaluation and partial retrofitting of concrete bridge bents with defect details", Latin American Journal of Solids and Structures, Brazilian Association of Computational Mechanics, 16(8). https://doi.org/10.1590/1679-78255158   DOI