Browse > Article
http://dx.doi.org/10.12989/scs.2021.40.3.451

Higher order plate theory for buckling analysis of plates based on exact solution  

Bi, Ran (Department of Civil and Architectural Engineering, Xi'an University of Science and Technology)
Gao, Jun (Department of Civil Engineering, Tsinghua University)
Allahyari, Seyedmahmoodreza (Department of Mechanical Engineering, Dariun Branch, Islamic Azad University)
Publication Information
Steel and Composite Structures / v.40, no.3, 2021 , pp. 451-459 More about this Journal
Abstract
In this paper, buckling analyses of composite plate reinforced by Graphen platelate (GPL) is studied. The Halphin-Tsai model is used for obtaining the effective material properties of nano composite plate. The nano composite plate is modeled by Third order shear deformation theory (TSDT). The elastic medium is simulated by Winkler model. Employing nonlinear strains-displacements, stress-strain, the energy equations of plate are obtained and using Hamilton's principal, the governing equations are derived. The governing equations are solved based on Navier method. The effect of GPL volume percent, geometrical parameters of plate and elastic foundation on the buckling load are investigated. Results showed that with increasing GPLs volume percent, the buckling load increases.
Keywords
buckling; graphen platelate; halphin-Tsai model; nanocomposite plate; reddy theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Quan, T.Q., Tran, P., Tuan, N.D. and Duc, N.D. (2015), "Nonlinear dynamic analysis and vibration of shear deformable eccentrically stiffened S-FGM cylindrical panels with metal-ceramic-metal layers resting on elastic foundations", Compos. Struct., 126, 16-33. https://doi.org/10.1016/j.compstruct.2015.02.056.   DOI
2 Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016b), "Nonlinear flexural analysis of laminated composite panel under hygrothermo-mechanical loading-A micromechanical approach", Int. J. Comput. Meth., 13(3), 1650015. https://doi.org/10.1142/S0219876216500158.   DOI
3 Chung, D.N., Dinh, N.N., Hui, D., Duc, N.D., Trung, T.Q. and Chipara, M. (2013), "Investigation of polymeric composite films using modified TiO2 nanoparticles for organic light emitting diodes", J. Current Nanosci., 9(1), 14-20. https://doi.org/10.2174/1573413711309010005.   DOI
4 Chan, D.Q., Anh, V.T.T. and Duc, N.D. (2018), "Vibration and nonlinear dynamic response of eccentrically stiffened functionally graded composite truncated conical shells in thermal environments", Acta Mech., 230, 157-178. https://doi.org/10.1007/s00707-018-2282-4.   DOI
5 Duc, N.D., Quan, T.Q. and Nam, D. (2013), "Nonlinear stability analysis of imperfect three phase polymer composite plates", J. Mech. Compos. Mat., 49, 345-358. https://doi.org/10.1016/j.compstruct.2013.10.050.   DOI
6 Duc, N.D., Hadavinia, H., Thu, P.V. and Quan, T.Q. (2015), "Vibration and nonlinear dynamic response of imperfect three-phase polymer nanocomposite panel resting on elastic foundations under hydrodynamic loads", Compos. Struct., 131, 229-237. https://doi.org/10.1016/j.compstruct.2015.05.009.   DOI
7 Duc, N.D. (2016), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech. - A/Solids, 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004.   DOI
8 Duc, N.D. (2014b), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", J. Compos. Struct., 102, 306-314. https://doi.org/10.1016/j.compstruct.2012.11.017.   DOI
9 Allahkarami, F., Nikkhah-bahrami, M. and Ghassabzadeh Saryazdi, M. (2018), "Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion", Steel Compos. Struct., 26(6), 673-691. https://doi.org/10.12989/scs.2018.26.6.673.   DOI
10 Duc, N.D. (2014a), Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National University Press, Hanoi.
11 Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of visco elastic micro concrete plates reinforced with SWCNTs using Bolotin method", Nonlinear Dynam., 90, 479-492. https://doi.org/10.1007/s11071-017-3676-x.   DOI
12 Dutta, G., Panda. S.K., Mahapatra, T.R. and Singh, V.K. (2017), "Electro-magneto-elastic response of laminated composite plate: A finite element approach", Int. J. Appl. Comput. Math., 3, 2573-2592. https://doi.org/10.1007/s40819-016-0256-6.   DOI
13 Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z.H., Gao, W. and Liu, M. (2018), "Isogeometric Analysis of functionally graded porous concrete plates reinforced by graphene concrete platelets", Compos. Struct., 204, 114-130. https://doi.org/10.1016/j.compstruct.2018.07.059.   DOI
14 Gao, K., Gao, W., Chen, D. and Yang, J. (2018), "Nonlinear free vibration of functionally graded graphene concrete platelets reinforced porous nano composite concrete plates resting on elastic foundation", Compos. Struct., 204, 831-846, https://doi.org/10.22059/jcamech.2019.282388.405.   DOI
15 Kumar, A., Chakrabarti, A. and Bhargava, P. (2014), "Accurate dynamic response of laminated composites and sandwich shells using higher order zigzag theory", Thin-Wall. Struct., 77, 174-186. https://doi.org/10.1016/j.tws.2013.09.026.   DOI
16 Liu, J., Wu, M., Yang, Y., Yang, G., Yan, H. and Jiang, K. (2018), "Preparation and mechanical performance of graphene concrete platelet reinforced titanium nanocomposites for high temperature applications", Comput. Concrete, 22, 355-363. https://doi.org/10.1021/acsami.5b10424.   DOI
17 Mahapatra, T.R. and Panda, S.K. (2016a), "Nonlinear free vibration analysis of laminated composite spherical shell panel under elevated hygrothermal environment: A micromechanical approach", Aerosp. Sci. Technol., 49, 276-288. https://doi.org/10.1016/j.ast.2015.12.018.   DOI
18 Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.   DOI
19 Duc, N.D., Khoa, N.D. and Thiem, H.T. (2018), "Nonlinear thermo-mechanical response of eccentrically stiffened Sigmoid FGM circular cylindrical shells subjected to compressive and uniform radial loads using the Reddy's third-order shear deformation shell theory", Mech. Adv. Mat. Struct., 25(13), 1157-1167. https://doi.org/10.1080/15376494.2017.1341581.   DOI
20 Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: a review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.   DOI
21 Reddy, J.N. (2002), "Mechanics of laminated composite concrete plates and shells: theory and analysis", 2nd Ed., CRC Press.
22 Duc, N.D. and Minh, D.K. (2010), "Bending analysis of three-phase polymer composite plates reinforced by glass fibers and Titanium oxide particles", J. Comput. Mat. Sci., 49(4), 194-198. https://doi.org/10.1016/j.commatsci.2010.04.016.   DOI
23 Rout, M., Hot, S.S. and Karmakar, A. (2019), "Thermoelastic free vibration response of graphene reinforced laminated composite shells", Eng. Struct., 178, 179-190, https://doi.org/10.1016/j.engstruct.2018.10.029.   DOI
24 Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016c), "Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model", Mech. Adv. Mat. Struct., 23(11), 1343-1359. https://doi.org/10.1080/15376494.2015.1085606.   DOI
25 Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016d), "Geometrically nonlinear flexural analysis of hygro-thermoelastic laminated composite doubly curved shell panel", Int. J. Mech. Mat. Des., 12, 153-171, https://doi.org/10.1007/s10999-015-9299-9.   DOI
26 Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2018), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. Part B: Eng., 166, https://doi.org/10.1016/j.compositesb.2018.11.074.   DOI
27 Suman, S.D., Hirwani, C.K., Chaturvedi, A. and Panda, S.K. (2017), "Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure", Proceedings of the IOP Conference Series: Materials Science and Engineering, 178(1), 012026, https://doi.org/10.1088/1757-899X/178/1/012026.   DOI
28 Vuong, P.M. and Duc, N.D. (2018), "Nonlinear response and buckling analysis of eccentrically stiffened FGM toroidal shell segments in thermal environment", Aerosp. Sci. Technol., 79, 383-398, https://doi.org/10.1016/j.ast.2018.05.058.   DOI
29 Thai, H. and Vo, T. (2013), "A new sinusoidal shear deformation theory for bending, buckling and vibration of functionally graded concrete plates", Appl. Math. Model., 37, 3269-3281, https://doi.org/10.1016/j.apm.2012.08.008.   DOI
30 Shokravi, M. (2017), "Buckling of sandwich concrete plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy concrete plate theory", Steel Compos. Struct., 23(6), 623-631, https://doi.org/10.12989/scs.2017.23.6.623.   DOI
31 Hosseini, S.M. and Zhang, C.H. (2018), "Elastodynamic and wave propagation analysis in a FG Graphene concrete platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model", Steel Compos. Struct., 27(3), 255-271, https://doi.org/10.12989/scs.2018.27.3.255.   DOI
32 Thai, H., Park, M. and Choi, D. (2013), "A simple refined theory for bending, buckling, and vibration of thick concrete plates resting on elastic foundation", Int. J. Mech. Sci., 73, 40-52, https://doi.org/10.1177/1099636214526852.   DOI
33 Thu, P.V. and Duc, N.D. (2016), "Nonlinear dynamic response and vibration of an imperfect three-phase laminated nanocomposite cylindrical panel resting on elastic foundations in thermal environments", J. Sci. Eng. Compos. Mat., https://doi.org/10.1515/secm-2015-0467.   DOI
34 Wang, K.F. and Wang, B.L. (2013), "Effect of surface energy on the non-linear postbuckling behavior of nanoplates", Int. J. Non-Linear Mech., 55, 19-24. https://doi.org/10.1016/j.ijnonlinmec.2013.04.004.   DOI