Browse > Article
http://dx.doi.org/10.12989/scs.2021.40.1.101

A nonlocal Layerwise theory for free vibration analysis of nanobeams with various boundary conditions on Winkler-Pasternak foundation  

Najafi, Mahsa (Advanced Materials and Computational Mechanics Lab., Department of Mechanical Engineering, University of Zanjan)
Ahmadi, Isa (Advanced Materials and Computational Mechanics Lab., Department of Mechanical Engineering, University of Zanjan)
Publication Information
Steel and Composite Structures / v.40, no.1, 2021 , pp. 101-119 More about this Journal
Abstract
In this study, a nonlocal Layerwise theory is presented for free vibration analysis of nanobeams resting on an elastic foundation. Eringen's nonlocal elasticity theory is used to consider the small-scale effect on behavior of nanobeam. The governing equations are obtained by employing Hamilton's principle and Layerwise theory of beams and Eringen's nonlocal constitutive equation. The presented theory takes into account the in-plane and transverse normal and shear strain in the modeling of the nanobeam and can predict more accurate results. The governing equations of the beam are solved by Navier's method for Simple-Simple boundary conditions and semi-analytical methods to obtain the natural frequency for various boundary conditions including Clamped-Simple (C-S), Clamped-Clamped (C-C) and Free-Free (F-F) boundary conditions. Predictions of the present theory are compared with benchmark results in the literature. Effects of nonlocal parameter, Pasternak shear coefficient, Winkler spring coefficient, boundary conditions, and the aspect ratio on the free vibration of nanobeams are studied. The flexural mode and thickness mode natural frequencies of the nanobeam are predicted. It is shown that the predictions of present method are more accurate than the equivalent single layer theories. The theoretical developments and formulation presented herein should also be served to analyze the mechanical behavior of various nanostructures with various loading and boundary conditions.
Keywords
free vibration; nanobeam; nonlocal elasticity theory; layerwise theory; winkler-pasternk foundation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ragb, O., Mohamed, M. and Matbuly, M.S. (2019), "Free vibration of a piezoelectric nanobeam resting on nonlinear Winkler-Pasternak foundation by quadrature methods", Heliyon, 5(6), e01856. https://doi.org/10.1016/j.heliyon.2019.e01856.   DOI
2 Reddy, J.N. (1989), "On the generalization of displacement-based laminate theories", Appl. Mech. Rev., 42(11), S213-S222. https://doi.org/10.1115/1.3152393.   DOI
3 Roque, C.M.C., Ferreira, A.J.M. and Reddy, J.N. (2011), "Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method", Int. J. Eng. Sci., 49(9), 976-984. https://doi.org/10.1016/j.ijengsci.2011.05.010.   DOI
4 Romano, G., Barretta, R. and Diaco, M. (2017), "On nonlocal integral models for elastic nano-beams", Int. J. Mech. Sci., 131, 490-499. https://doi.org/10.1016/j.ijmecsci.2017.07.013.   DOI
5 Sahmani, S., Aghdam, M.M. and Bahrami, M. (2015), "On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects", Compos. Struct., 121, 377-385. https://doi.org/10.1016/j.compstruct.2014.11.033.   DOI
6 Salehipour, H. and Shahsavar, A. (2018), "A three dimensional elasticity model for free vibration analysis of functionally graded micro/nano plates: Modified strain gradient theory", Compos. Struct., 206, 415-424. https://doi.org/10.1016/j.compstruct.2018.08.033.   DOI
7 Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053.   DOI
8 Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of double-FGM nanoplates via a quasi-3D refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096.   DOI
9 Aydogdu, M. and Filiz, S. (2011), "Modeling carbon nanotubebased mass sensors using axial vibration and nonlocal elasticity", Physica E: Low-dimensional Syst. Nanostruct., 43(6), 1229-1234. https://doi.org/10.1016/j.physe.2011.02.006.   DOI
10 Basar, Y., and Ding, Y. (1995), "Interlaminar stress analysis of composites: layer-wise shell finite elements including transverse strains", Composites Engineering, 5(5), 485-499. https://doi.org/10.1016/0961-9526(95)00020-N   DOI
11 Bessaim, A., Houari, M.S.A., Bernard, F. and Tounsi, A. (2015), "A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates", Struct. Eng. Mech., 56(2), 223-240. https://doi.org/10.12989/sem.2015.56.2.223.   DOI
12 Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191. http://dx.doi.org/10.12989/anr.2019.7.3.191.   DOI
13 Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Method. Eng., 24(3), 169-181. https://doi.org/10.1002/cnm.961.   DOI
14 Civalek, O. and Demir, C. (2011a), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.   DOI
15 Civalek, O. and Demir, C. (2011b), "Buckling and bending analyses of cantilever carbon nanotubes using the Euler-Bernoulli beam theory based on non-local continuum model; technical note", Asian J. Civil Eng. (Building and Housing), 12(5), 651-661.
16 Srinivas, S., Rao, C.J. and Rao, A.K. (1970), "An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates", J. Sound Vib., 12(2), 187-199. https://doi.org/10.1016/0022-460X(70)90089-1.   DOI
17 Arani, A.G., Fereidoon, A. and Kolahchi, R. (2015), "Nonlinear surface and nonlocal piezoelasticity theories for vibration of embedded single-layer boron nitride sheet using harmonic differential quadrature and differential cubature methods", J. Intel. Mater. Syst. Struct., 26(10), 1150-1163. https://doi.org/10.1177%2F1045389X14538331.   DOI
18 Kachapi, S.H.H., Dardel, M., Daniali, H.M. and Fathi, A. (2019), "Effects of surface energy on vibration characteristics of double-walled piezo-viscoelastic cylindrical nanoshell", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(15), 5264-5279. https://doi.org/10.1177%2F0954406219845019.   DOI
19 Afshin, M. and Taheri-Behrooz, F. (2015), "Interlaminar stresses of laminated composite beams resting on elastic foundation subjected to transverse loading", Comput. Mater. Sci., 96, 439-447. https://doi.org/10.1016/j.commatsci.2014.06.027.   DOI
20 Rakocevic, M., and Popovic, S. (2018), "Bending analysis of simply supported rectangular laminated composite plates using a new computation method based on analytical solution of layerwise theory", Archive of Applied Mechanics, 88(5), 671-689. https://doi.org/10.1007/s00419-017-1334-x   DOI
21 Tahani, M. (2007), "Analysis of laminated composite beams using layerwise displacement theories", Compos. Struct., 79(4), 535-547. https://doi.org/10.1016/j.compstruct.2006.02.019.   DOI
22 Tan, G., Shan, J., Wu, C. and Wang, W. (2017), "Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems", Struct. Eng. Mech., 63(4), 551-565. https://doi.org/10.12989/sem.2017.63.4.551.   DOI
23 Thai, C.H., Ferreira, A.J.M., Wahab, M.A. and Nguyen-Xuan, H. (2016), "A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis", Acta Mechanica, 227(5), 1225-1250. https://doi.org/10.1007/s00707-015-1547-4.   DOI
24 Akgoz, B. and Civalek, O. (2011), "Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories", J. Comput. Theor. Nanosci., 8(9), 1821-1827. https://doi.org/10.1166/jctn.2011.1888.   DOI
25 Ahmadi, I. and Najafi, M. (2016), "Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells", Steel Compos. Struct., 22(5), 1193-1214. https://doi.org/10.12989/scs.2016.22.5.1193.   DOI
26 Ahmadi, I. (2019), "Free edge stress prediction in thick laminated cylindrical shell panel subjected to bending moment", Appl. Math. Model., 65, 507-525. https://doi.org/10.1016/j.apm.2018.08.029.   DOI
27 Aimmanee, S. and Batra, R.C. (2007), "Analytical solution for vibration of an incompressible isotropic linear elastic rectangular plate, and frequencies missed in previous solutions", J. Sound Vib., 302(3), 613-620. https://doi.org/10.1016/j.jsv.2006.11.029.   DOI
28 Akgoz, B. and Civalek, O. (2017), "A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation", Compos. Struct., 176, 1028-1038. https://doi.org/10.1016/j.compstruct.2017.06.039.   DOI
29 Asrari, R., Ebrahimi, F., Kheirikhah, M.M. and Safari, K.H. (2020), "Buckling analysis of heterogeneous magneto-electrothermo-elastic cylindrical nanoshells based on nonlocal strain gradient elasticity theory", Mech. Based Des. Struct. Machines, 1-24. https://doi.org/10.1080/15397734.2020.1728545.   DOI
30 Anjomshoa, A. and Tahani, M. (2016), "Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method", J. Mech. Sci. Technol., 30(6), 2463-2474.   DOI
31 Wang, C.M., Kitipornchai, S., Lim, C.W. and Eisenberger, M. (2008), "Beam bending solutions based on nonlocal Timoshenko beam theory", J. Eng. Mech., 134(6), 475-481. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(475).   DOI
32 Topal, U. (2012), "Frequency optimization for laminated composite plates using extended layerwise approach", Steel Compos. Struct., 12(6), 541-548. https://doi.org/10.12989/scs.2012.12.6.541.   DOI
33 Toupin, R.A. (1964), "Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal., 17(2), 85-112. https://doi.org/10.1007/BF00253050.   DOI
34 Tuna, M. and Kirca, M. (2016), "Exact solution of Eringen's nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams", Int. J. Eng. Sci., 105, 80-92. https://doi.org/10.1016/j.ijengsci.2016.05.001.   DOI
35 Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401. https://doi.org/10.1088/0957-4484/18/10/105401.   DOI
36 Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.   DOI
37 Demir, C. and Civalek, O. (2017), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos. Struct., 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091.   DOI
38 Ahmadi, I. (2018), "Three-dimensional and free-edge hygrothermal stresses in general long sandwich plates", Struct. Eng. Mech., 65(3), 275-290. https://doi.org/10.12989/sem.2018.65.3.275.   DOI
39 Civalek, O. and Demir, C. (2016), "A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method", Appl. Math. Comput., 289, 335-352. https://doi.org/10.1016/j.amc.2016.05.034.   DOI
40 Demir, C. and Civalek, O. (2017), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016.   DOI
41 de Sciarra, F.M. (2014), "Finite element modelling of nonlocal beams", Physica E: Low-Dimensional Syst. Nanostruct., 59, 144-149. https://doi.org/10.1016/j.physe.2014.01.005.   DOI
42 El-Sayed, T.A. and Farghaly, S.H. (2016), "Exact vibration of Timoshenko beam combined with multiple mass spring subsystems", Struct. Eng. Mech., 57(6), 989-1014. http://dx.doi.org/10.12989/sem.2016.57.6.989.   DOI
43 Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090.   DOI
44 Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016.   DOI
45 Arefi, M. (2016), "Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage", Appl. Math. Mech., 37(3), 289-302. https://doi.org/10.1007/s10483-016-2039-6.   DOI
46 Ansari, R., Pourashraf, T. and Gholami, R. (2015), "An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory", Thin-Wall. Struct., 93, 169-176. https://doi.org/10.1016/j.tws.2015.03.013.   DOI
47 Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024.   DOI
48 Beni, Y.T., Mehralian, F. and Razavi, H. (2015), "Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory", Compos. Struct., 120, 65-78. https://doi.org/10.1016/j.compstruct.2014.09.065.   DOI
49 Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Model., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026.   DOI
50 Ebrahimi, F., Barati, M.R. and Zenkour, A.M. (2018), "A new nonlocal elasticity theory with graded nonlocality for thermomechanical vibration of FG nanobeams via a nonlocal third-order shear deformation theory", Mech. Adv. Mater. Struct., 25(6), 512-522. https://doi.org/10.1080/15376494.2017.1285458.   DOI
51 Akgoz, B. and Civalek, O. (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.   DOI
52 Behera, L. and Chakraverty, S. (2015), "Application of Differential Quadrature method in free vibration analysis of nanobeams based on various nonlocal theories", Comput. Math. with Appl., 69(12), 1444-1462. https://doi.org/10.1016/j.camwa.2015.04.010.   DOI
53 Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A., (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.   DOI
54 Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003.   DOI
55 Ahmadi, I. (2016), "Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation", Struct. Eng. Mech., 57(4), 733-762. https://doi.org/10.12989/sem.2016.57.4.733.   DOI
56 Civalek, O. and Acar, M.H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", Int. J. Pressure Vess. Piping, 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001.   DOI
57 Arefi, M. and Zenkour, A.M. (2018), "Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams", Steel Compos. Struct., 29(5), 579-590. https://doi.org/10.12989/scs.2018.29.5.579.   DOI
58 Mindlin, R.D. and Eshel, N.N. (1968), "On first strain-gradient theories in linear elasticity", Int. J. Solid. Struct., 4(1), 109-124. https://doi.org/10.1016/0020-7683(68)90036-X.   DOI
59 Narendar, S., Ravinder, S. and Gopalakrishnan, S. (2012), "Strain gradient torsional vibration analysis of micro/nano rods", Int. J. Nano Dimension, 3(1), 1-17. https://doi.org/10.7508/IJND.2012.01.001.   DOI
60 Norouzzadeh, A. and Ansari, R. (2017), "Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity", Physica E: Low-dimensional Syst. Nanostruct., 88, 194-200. https://doi.org/10.1016/j.physe.2017.01.006.   DOI
61 Ahmadi, I. (2018), "Three-dimensional stress analysis in torsion of laminated composite bar with general layer stacking", Eur. J. Mech.-A/Solids, 72, 252-267. https://doi.org/10.1016/j.euromechsol.2018.05.003.   DOI
62 Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.   DOI
63 Ansari, R., Pourashraf, T., Gholami, R., Sahmani, S. and Ashrafi, M.A. (2015), "Size-dependent resonant frequency and flexural sensitivity of atomic force microscope microcantilevers based on the modified strain gradient theory", Int. J. Optomechatron., 9(2), 111-130. https://doi.org/10.1080/15599612.2015.1034900.   DOI
64 Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.   DOI
65 Ganapathi, M., Merzouki, T. and Polit, O. (2018), "Vibration study of curved nanobeams based on nonlocal higher-order shear deformation theory using finite element approach", Compos. Struct., 184, 821-838. https://doi.org/10.1016/j.compstruct.2017.10.066.   DOI
66 Khayat, M., Poorveis, D. and Moradi, S. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301.   DOI
67 Nosier, A. and Miri, A.K. (2010), "Boundary-layer hygrothermal stresses in laminated, composite, circular, cylindrical shell panels", Arch. Appl. Mech., 80(4), 413-440. https://doi.org/10.1007/s00419-009-0323-0.   DOI
68 Numanoglu, H.M., Akgoz, B. and Civalek, O. (2018), "On dynamic analysis of nanorods", Int. J. Eng. Sci., 130, 33-50. https://doi.org/10.1016/j.ijengsci.2018.05.001.   DOI
69 Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355. https://doi.org/10.1088/0960-1317/16/11/015.   DOI
70 Plagianakos, T.S. and Saravanos, D.A. (2009), "Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates", Compos. Struct., 87(1), 23-35. https://doi.org/10.1016/j.compstruct.2007.12.002.   DOI
71 Pourkermani, A.G., Azizi, B. and Pishkenari, H.N. (2020), "Vibrational analysis of Ag, Cu and Ni nanobeams using a hybrid continuum-atomistic model", Int. J. Mech. Sci., 165, 105208. https://doi.org/10.1016/j.ijmecsci.2019.105208.   DOI
72 Ren, S. and Zhao, G. (2019), "High-Order Layerwise Formulation of Transverse Shear Stress Field for Laminated Composite Beams", AIAA J., 57(5), 2171-2184. https://doi.org/10.2514/1.J057412.   DOI
73 Akgoz, B. and Civalek, O. (2011), "Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams", Int. J. Eng. Sci., 49(11), 1268-1280. https://doi.org/10.1016/j.ijengsci.2010.12.009.   DOI
74 Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-dimensional Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.   DOI
75 Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339.   DOI
76 Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.   DOI
77 Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431.   DOI
78 Trabelssi, M., El-Borgi, S., Fernandes, R. and Ke, L.L. (2019), "Nonlocal free and forced vibration of a graded Timoshenko nanobeam resting on a nonlinear elastic foundation", Compos. Part B: Eng., 157, 331-349. https://doi.org/10.1016/j.compositesb.2018.08.132.   DOI
79 Gao, Y., Xiao, W.S. and Zhu, H., (2019), "Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory", Steel Compos. Struct., 31(5), pp.469-488. https://doi.org/10.12989/scs.2019.31.5.469.   DOI
80 Seifoori, S. and Liaghat, G.H. (2013), "Low velocity impact of a nanoparticle on nanobeams by using a nonlocal elasticity model and explicit finite element modeling", Int. J. Mech. Sci., 69, 85-93. https://doi.org/10.1016/j.ijmecsci.2013.01.030.   DOI
81 Numanoglu, H.M. and Civalek, O. (2019), "On the torsional vibration of nanorods surrounded by elastic matrix via nonlocal FEM", Int. J. Mech. Sci., 161, 105076. https://doi.org/10.1016/j.ijmecsci.2019.105076.   DOI
82 Wang, J., Shen, H., Zhang, B., Liu, J. and Zhang, Y. (2018), "Complex modal analysis of transverse free vibrations for axially moving nanobeams based on the nonlocal strain gradient theory", Physica E: Low-dimensional Syst. Nanostruct., 101, 85-93. https://doi.org/10.1016/j.physe.2018.03.017.   DOI
83 Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.   DOI
84 Ebrahimi, F. and Barati, M.R. (2016), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory", Appl. Phys. A, 122(9), 843. https://doi.org/10.1007/s00339-016-0368-1.   DOI
85 Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.   DOI
86 Khaniki, H.B. (2018), "Vibration analysis of rotating nanobeam systems using Eringen's two-phase local/nonlocal model", Physica E: Low-dimensional Syst. Nanostruct., 99, 310-319. https://doi.org/10.1016/j.physe.2018.02.008.   DOI
87 Wang, G.F., Feng, X.Q. and Yu, S.W. (2007), "Surface buckling of a bending microbeam due to surface elasticity", EPL (Europhysics Letters), 77(4), 44002. https://doi.org/10.1209/0295-5075/77/44002.   DOI
88 Wang, L. (2010), "Wave propagation of fluid-conveying single-walled carbon nanotubes via gradient elasticity theory", Comput. Mater. Sci., 49(4), 761-766. https://doi.org/10.1016/j.commatsci.2010.06.019.   DOI
89 Chen, W.Q., Lu, C.F. and Bian, Z.G. (2004), "A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation", Appl. Math. Model., 28(10), 877-890. https://doi.org/10.1016/j.apm.2004.04.001.   DOI
90 Jandaghian, A.A. and Rahmani, O. (2017), "Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions", Steel Compos. Struct., 25(1), 67-78. https://doi.org/10.12989/scs.2017.25.1.067.   DOI
91 Khalid, H.M., Yasin, M.Y., and Khan, A.H. (2018), "Free Vibration Analysis of Multilayered Arches using a Layerwise Theory", Proceedings of the IOP Conference Series: Materials Science and Engineering, 377(1), 012168. https://doi.org/10.1088/1757-899X/377/1/012168.   DOI
92 Kordkheili, S.H. and Soltani, Z. (2018), "A layerwise finite element for geometrically nonlinear analysis of composite shells", Compos. Struct., 186, 355-364. https://doi.org/10.1016/j.compstruct.2017.12.022.   DOI
93 Zhang, G.Y. and Gao, X.L. (2019), "A non-classical Kirchhoff rod model based on the modified couple stress theory", Acta Mechanica, 230(1), 243-264. https://doi.org/10.1007/s00707-018-2279-z.   DOI
94 Xu, L. and Yang, Q. (2015), "Multi-field coupled dynamics for a micro beam", Mech. Based Des. Struct., 43(1), 57-73. https://doi.org/10.1080/15397734.2014.928221.   DOI
95 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.   DOI
96 Zhang, C. and Chang, R. (2019), "Improved Layerwise theory method application to stress analysis for composite tube in pure bending", Proceedings of the IOP Conference Series: Materials Science and Engineering, 474(1), 012055. https://doi.org/10.1088/1757-899X/474/1/012055.   DOI
97 Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.   DOI
98 Faroughi, S., Rahmani, A. and Friswell, M.I. (2020), "On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model", Appl. Math. Model., 80, 169-190. https://doi.org/10.1016/j.apm.2019.11.040.   DOI
99 Lim, C.W., Islam, M.Z. and Zhang, G. (2015), "A nonlocal finite element method for torsional statics and dynamics of circular nanostructures", Int. J. Mech. Sci., 94, 232-243. https://doi.org/10.1016/j.ijmecsci.2015.03.002.   DOI
100 Li, X.F. and Wang, B.L. (2009), "Vibrational modes of Timoshenko beams at small scales", Appl. Phys. Lett., 94(10), 101903. https://doi.org/10.1063/1.3094130.   DOI
101 Malekzadeh, P. and Shojaee, M. (2013), "Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams", Compos. Part B: Eng., 52, 84-92. https://doi.org/10.1016/j.compositesb.2013.03.046.   DOI
102 Lu, L., Guo, X. and Zhao, J. (2017), "Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory", Int. J. Eng. Sci., 116, 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006.   DOI
103 Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010.   DOI
104 Jomehzadeh, E., Noori, H.R. and Saidi, A.R. (2011), "The size-dependent vibration analysis of micro-plates based on a modified couple stress theory", Physica E: Low-dimensional Syst. Nanostruct., 43(4), 877-883. https://doi.org/10.1016/j.physe.2010.11.005.   DOI
105 Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.   DOI
106 Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Rational Mech. Anal., 11, 415-448. https://doi.org/10.1007/BF00253946.   DOI
107 Nosier, A., Kapania, R.K. and Reddy, J.N. (1993), "Free vibration analysis of laminated plates using a layerwise theory", AIAA J., 31(12), 2335-2346. https://doi.org/10.2514/3.11933.   DOI
108 Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Comput. Mater. Sci., 49(3), 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040.   DOI
109 Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B: Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071.   DOI