Browse > Article
http://dx.doi.org/10.12989/scs.2021.39.6.765

Mixed mode I/II fracture criterion to anticipate cracked composite materials based on a reinforced kinked crack along maximum shear stress path  

Shahsavar, Sadra (Faculty of New Sciences and Technologies, University of Tehran)
Fakoor, Mahdi (Faculty of New Sciences and Technologies, University of Tehran)
Berto, Filippo (Norwegian University of Science and Technology)
Publication Information
Steel and Composite Structures / v.39, no.6, 2021 , pp. 765-779 More about this Journal
Abstract
In this paper, a fracture criterion for predicting the failure of the cracked composite specimens under mixed mode I/II loading is provided. Various tests performed on composite components reveal that cracks always grow along the fibers in the isotropic media. Using a new material model called reinforcement isotropic solid (RIS) concept, it is possible to extend the isotropic mixed mode fracture criteria into composite materials. In the proposed criterion, maximum shear stress (MSS) theory which is widely used for failure investigation of un-cracked isotropic materials will be extended to composite materials in combination with RIS concept. In the present study, cracks are oriented along the fibers in the isotropic material. It is assumed that at the onset of fracture, crack growth will be in a path where the shear stress has the highest value according to the MSS criterion. Investigating the results of this criterion and comparing with the available experimental data, it is shown that, both the crack propagation path and the moment of crack growth are well predicted. Available mixed mode I/II fracture data of various wood species are used to evaluate and verify the theoretical results.
Keywords
extended maximum shear stress path; fracture criterion; mixed mode I/II loading; composite materials; reinforcement isotropic solid model; RIS concept; crack growth;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Sih, G.C., Paris, P.C. and Irwin, G.R. (1965), "On cracks in rectilinearly anisotropic bodies", Int. J. Fract. Mech., 1(3), 189-203. https://doi.org/10.1007/BF00186854.   DOI
2 Su, R.K.L. and Sun, H.Y. (2003), "Numerical solutions of two-dimensional anisotropic crack problems", Int. J. Solids Struct., 40(18), 4615-4635. https://doi.org/10.1016/S0020-7683(03)00310-X.   DOI
3 Di Cocco, V., Iacoviello, F. and Cavallini, M. (2010), "Damaging micromechanisms characterization of a ferritic ductile cast iron", Eng. Fract. Mech., 77(11), 2016-2023. https://doi.org/10.1016/j.engfracmech.2010.03.037.   DOI
4 Di Cocco, V., Iacoviello, F., Rossi, A. and Iacoviello, D. (2014), "Macro and microscopical approach to the damaging micromechanisms analysis in a ferritic ductile cast iron", Theor. Appl. Fract. Mech., 69, 26-33. https://doi.org/10.1016/j.tafmec.2013.11.003.   DOI
5 Edlund, J., Lindstrom, H., Nilsson, F. and Reale, M. (2006), "Modulus of elasticity of Norway spruce saw logs vs. structural lumber grade", Holz als Roh-und Werkstoff, 64(4), 273-279. https://doi.org/10.1007/s00107-005-0091-7.   DOI
6 Fakoor, M. (2017), "Augmented Strain Energy Release Rate (ASER): a novel approach for investigation of mixed-mode I/II fracture of composite materials", Eng. Fract. Mech., 179, 177-189. https://doi.org/10.1016/j.engfracmech.2017.04.049.   DOI
7 Fakoor, M. and Ghoreishi, S.M.N. (2018), "Experimental and numerical investigation of progressive damage in composite laminates based on continuum damage mechanics", Polymer Testing, 70, 533-543. https://doi.org/10.1016/j.polymertesting.2018.08.013.   DOI
8 Fakoor, M. and Khansari, N.M. (2016), "Mixed mode I/II fracture criterion for orthotropic materials based on damage zone properties", Eng. Fract. Mech., 153, 407-420. https://doi.org/10.1016/j.engfracmech.2015.11.018.   DOI
9 Shahsavar, S., Fakoor, M. and Berto, F. (2020), "Verification of reinforcement isotropic solid model in conjunction with maximum shear stress criterion to anticipate mixed mode I/II fracture of composite materials", Acta Mechanica, 1-20. https://doi.org/10.1007/s00707-020-02810-8.   DOI
10 Toribio, J. and Ayaso, F.J. (2003), "A fracture criterion for high-strength steel structural members containing notch-shape defects", Steel Compos. Struct., 3(4), 231-242. https://doi.org/10.12989/scs.2003.3.4.231.   DOI
11 Nobile, L., Piva, A. and Viola, E. (2004), "On the inclined crack problem in an orthotropic medium under biaxial loading", Eng. Fract. Mech., 71(4-6), 529-546. https://doi.org/10.1016/S0013-7944(03)00051-1.   DOI
12 Aghaei, M., Forouzan, M.R., Nikforouz, M. and Shahabi, E. (2015), "A study on different failure criteria to predict damage in glass/polyester composite beams under low velocity impact", Steel Compos. Struct., 18(5), 1291-1303. https://doi.org/10.12989/scs.2015.18.5.1291.   DOI
13 Mall, S., Murphy, J.F. and Shottafer, J.E. (1983), "Criterion for mixed mode fracture in wood", J. Eng. Mech., 109(3), 680-690. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:3(680).   DOI
14 Leicester, R.H. (2006), "Application of linear fracture mechanics to notched timber elements", Progress Struct. Eng. Mater., 8(1), 29-37. https://doi.org/10.1002/pse.210.   DOI
15 Marsavina, L., Pop, I.O. and Linul, E. (2019), "Mechanical and fracture properties of particleboard", Frattura Ed., Integrita Strutturale, 13(47), 266-276. https://doi.org/10.3221/IGFESIS.47.20.   DOI
16 McKinney, J.M. (1972), "Mixed-mode fracture of unidirectional graphite/epoxy composites", J. Compos. Mater., 6(1), 164-166. https://doi.org/10.1177%2F002199837200600115.   DOI
17 Reynolds, T.P., Sharma, B., Serrano, E., Gustafsson, P.J. and Ramage, M.H. (2019), "Fracture of laminated bamboo and the influence of preservative treatments", Compos. Part B: Eng., 174, 107017. https://doi.org/10.1016/j.compositesb.2019.107017.   DOI
18 Fakoor, M. and Khansari, N.M. (2018), "General mixed mode I/II failure criterion for composite materials based on matrix fracture properties", Theor. Appl. Fract. Mech., 96, 428-442. https://doi.org/10.1016/j.tafmec.2018.06.004.   DOI
19 Fakoor, M. and Rafiee, R. (2013), "Fracture investigation of wood under mixed mode I/II loading based on the maximum shear stress criterion", Strength Mater., 45(3), 378-385. https://doi.org/10.1007/s11223-013-9468-8.   DOI
20 Razavi, S.M.J. and Berto, F. (2019), "A new fixture for fracture tests under mixed mode I/II/III loading", Fatigue Fract. Eng. M., 42(9), 1874-1888. https://doi.org/10.1111/ffe.13033,   DOI
21 Rizov, V.I. (2017), "Non-linear study of mode II delamination fracture in functionally graded beams", Steel Compos. Struct., 23(3), 263-271. https://doi.org/10.12989/scs.2017.23.3.263.   DOI
22 Romanowicz, M. (2019), "A non-local stress fracture criterion accounting for the anisotropy of the fracture toughness", Eng. Fract. Mech., 214, 544-557. https://doi.org/10.1016/j.engfracmech.2019.04.033.   DOI
23 Ross, R.J. (2010), Wood handbook: wood as an engineering material. USDA Forest Service, Forest Products Laboratory. General Technical Report FPL-GTR-190, 509(5).
24 Scorza, D., et al. (2019), "Size-effect independence of particleboard fracture toughness", Compos. Struct., 229, 111374. https://doi.org/10.1016/j.compstruct.2019.111374.   DOI
25 Saouma, V.E., Ayari, M.L. and Leavell, D.A. (1987), "Mixed mode crack propagation in homogeneous anisotropic solids", Eng. Fract. Mech., 27(2), 171-184. https://doi.org/10.1016/0013-7944(87)90166-4.   DOI
26 Golewski, G.L. (2020), "Changes in the fracture toughness under mode II loading of low calcium fly ash (LCFA) concrete depending on ages", Materials, 13(22), 5241. https://doi.org/10.3390/ma13225241.   DOI
27 Romanowicz, M. and Seweryn, A. (2008), "Verification of a nonlocal stress criterion for mixed mode fracture in wood", Eng. Fract. Mech., 75(10), 3141-3160. https://doi.org/10.1016/j.engfracmech.2007.12.006.   DOI
28 Mirsayar, M.M., Razmi, A. and Berto, F. (2018), "Tangential strain-based criteria for mixed-mode I/II fracture toughness of cement concrete", Fatigue Fract. Eng. M., 41(1), 129-137. https://doi.org/10.1111/ffe.12665.   DOI
29 Golewski, G.L. (2017b), "Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading", Struct. Eng. Mech., 62(1), 1-9. https://doi.org/10.12989/sem.2017.62.1.001.   DOI
30 Fakoor, M., Rafiee, R. and Zare, S. (2019), "Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials", Steel Compos. Struct., 30(1), 1-12. https://doi.org/10.12989/scs.2019.30.1.001.   DOI
31 Golewski, G.L. (2017c), "Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure", Mater. Characterization, 134, 335-346. https://doi.org/10.1016/j.matchar.2017.11.008.   DOI
32 Fakoor, M. and Shahsavar, S. (2020), "Fracture assessment of cracked composite materials: Progress in models and criteria", Theoretical and Applied Fracture Mech., 105, 102430. https://doi.org/10.1016/j.tafmec.2019.102430.   DOI
33 D'Angela, D., Ercolino, M., Bellini, C., Di Cocco, V. and Iacoviello, F. (2020), "Characterisation of the damaging micromechanisms in a pearlitic ductile cast iron and damage assessment by acoustic emission testing", Fatigue Fract. Eng. M., 43(5), 1038-1050. https://doi.org/10.1111/ffe.13214.   DOI
34 Farid, H.M. and Fakoor, M. (2019), "Mixed mode I/II fracture criterion for arbitrary cracks in orthotropic materials considering T-stress effects", Theor. Appl. Fract. Mech., 99, 147-160. https://doi.org/10.1016/j.tafmec.2018.11.015.   DOI
35 Farid, H.M. and Fakoor, M. (2020), "Mixed mode I/II fracture criterion to anticipate behavior of the orthotropic materials", Steel Compos. Struct., 34(5), 671-679. https://doi.org/10.12989/scs.2020.34.5.671.   DOI
36 Fernandino, D.O., Boeri, R.E., Di Cocco, V., Bellini, C. and Iacoviello, F. (2020a), "Damage evolution during tensile test of austempered ductile iron partially austenized", Mater. Design Process. Commun., 2(4), e157. https://doi.org/10.1002/mdp2.157.   DOI
37 Fernandino, D.O., Tenaglia, N., Di Cocco, V., Boeri, R.E. and Iacoviello, F. (2020c), "Relation between microstructural heterogeneities and damage mechanisms of a ferritic spheroidal graphite cast iron during tensile loading", Fatigue Fract. Eng. M., 43(6), 1262-1273. https://doi.org/10.1111/ffe.13221.   DOI
38 Golewski, G.L. (2017a), "Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture", J. Civil Eng. Management, 23(5), 613-620. https://doi.org/10.3846/13923730.2016.1217923.   DOI
39 Fakoor, M. and Khezri, M.S. (2020), "A micromechanical approach for mixed mode I/II failure assessment of cracked highly orthotropic materials such as wood", Theor. Appl. Fract. Mech., 109, 102740. https://doi.org/10.1016/j.tafmec.2020.102740.   DOI
40 Fernandino, D.O., Di Cocco, V., Boeri, R.E. and Iacoviello, F. (2020b), "Microstrain measurements and damage analysis during tensile loading of intercritical austempered ductile iron", Fatigue Fract. Eng. M., 43(11), 2744-2755. https://doi.org/10.1111/ffe.13346.   DOI
41 Jernkvist, L.O. (2001a), "Fracture of wood under mixed mode loading: I. Derivation of fracture criteria", Eng. Fracture Mech., 68(5), 549-563. https://doi.org/10.1016/S0013-7944(00)00127-2.   DOI
42 Anaraki, A.G. and Fakoor, M. (2010), "General mixed mode I/II fracture criterion for wood considering T-stress effects", Mater. Design, 31(9), 4461-4469. https://doi.org/10.1016/j.matdes.2010.04.055.   DOI
43 Akbas, S.D. (2019), "Nonlinear behavior of fiber reinforced cracked composite beams", Steel Compos. Struct., 30(4), 327-336. https://doi.org/10.12989/scs.2019.30.4.327.   DOI
44 Al-Fasih, M.Y., Kueh, A.B.H., Abo Sabah, S.H. and Yahya, M.Y. (2018), "Tow waviness and anisotropy effects on Mode II fracture of triaxially woven composite", Steel Compos. Struct., 26(2), 241-253. https://doi.org/10.12989/scs.2018.26.2.241.   DOI
45 Altunisik, A.C., Gunaydin, M., Sevim, B. and Adanur, S. (2017), "System identification of arch dam model strengthened with CFRP composite materials", Steel Compos. Struct., 25(2), 231-244. https://doi.org/10.12989/scs.2017.25.2.231.   DOI
46 Anaraki, A.G. and Fakoor, M. (2011), "A new mixed-mode fracture criterion for orthotropic materials, based on strength properties", J. Strain Anal. Eng., 46(1), 33-44. https://doi.org/10.1243/03093247JSA667.   DOI
47 Ataabadi, K., Ziaei-Rad, S. and Hosseini-Toudeshky, H. (2012), "Compression failure and fiber-kinking modeling of laminated composites", Steel Compos. Struct., 12(1), 53-72. http://dx.doi.org/10.12989/scs.2011.12.1.053.   DOI
48 Golewski, G.L. (2019b), "Physical characteristics of concrete, essential in design of fracture-resistant, dynamically loaded reinforced concrete structures", Mater. Design Process. Commun., 1(5), e82. https://doi.org/10.1002/mdp2.82   DOI
49 Golewski, G.L. (2018), "An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives", Compos. Struct., 200, 515-520. https://doi.org/10.1016/j.compstruct.2018.05.144.   DOI
50 Golewski, G.L. (2019a), "The influence of microcrack width on the mechanical parameters in concrete with the addition of fly ash: Consideration of technological and ecological benefits", Constr. Build. Mater., 197, 849-861. https://doi.org/10.1016/j.conbuildmat.2018.08.157.   DOI
51 Golewski, G.L. (2021), "The Beneficial Effect of the Addition of Fly Ash on Reduction of the Size of Microcracks in the ITZ of Concrete Composites under Dynamic Loading", Energies, 14(3), 668. https://doi.org/10.3390/en14030668.   DOI
52 Golewski, G.L. and Gil, D.M. (2021), "Studies of Fracture Toughness in Concretes Containing Fly Ash and Silica Fume in the First 28 Days of Curing", Materials, 14(2), 319. https://doi.org/10.3390/ma14020319.   DOI
53 Hunt, D.G. and Croager, W.P. (1982), "Mode II fracture toughness of wood measured by a mixed-mode test method", J. Mater. Sci. Lett., 1(2), 77-79. https://doi.org/10.1007/BF00731031.   DOI
54 Jernkvist, L.O. (2001b), "Fracture of wood under mixed mode loading: II. Experimental investigation of Picea abies", Eng. Fracture Mech., 68(5), 565-576. https://doi.org/10.1016/S0013-7944(00)00128-4.   DOI
55 Kaman, M.O. and Cetisli, F. (2012), "Numerical analysis of center cracked orthotropic fgm plate: Crack and material axes differ by θ", Steel Compos. Struct., 13(2), 187-206. https://doi.org/10.12989/scs.2012.13.2.187.   DOI
56 Fakoor, M. and Farid, H.M. (2019), "Mixed-mode I/II fracture criterion for crack initiation assessment of composite materials", Acta Mechanica, 230(1), 281-301. https://doi.org/10.1007/s00707-018-2308-y.   DOI
57 Berto, F. (2014), "A brief review of some local approaches for the failure assessment of brittle and quasi-brittle materials", Adv. Mater. Sci. Eng., (2014). https://doi.org/10.1155/2014/930679.   DOI
58 Chen, S., Shi, X. and Qiu, Z. (2011), "Shear bond failure in composite slabs-a detailed experimental study", Steel Compos. Struct., 11(3), 233-250. http://dx.doi.org/10.12989/scs.2011.11.3.233.   DOI
59 Dall'Asta, A., Dezi, L. and Leoni, G. (2002), "Failure mechanisms of externally prestressed composite beams with partial shear connection", Steel Compos. Struct., 2(5), 315-330. https://doi.org/10.12989/scs.2002.2.5.315.   DOI
60 Khansari, N.M., Fakoor, M. and Berto, F. (2019), "Probabilistic micromechanical damage model for mixed mode I/II fracture investigation of composite materials", Theor. Appl. Fract. Mech., 99, 177-193. https://doi.org/10.1016/j.tafmec.2018.12.003.   DOI
61 Daneshjoo, Z., Shokrieh, M.M. and Fakoor, M. (2018), "A micromechanical model for prediction of mixed mode I/II delamination of laminated composites considering fiber bridging effects", Theor. Appl. Fract. Mech., 94, 46-56. https://doi.org/10.1016/j.tafmec.2017.12.002.   DOI
62 Kollmann, F.F., Kuenzi, E.W. and Stamm, A.J. (2012), Principles of Wood Science and Technology: II Wood Based Materials. Springer Science & Business Media.
63 Van der Put, T.A.C.M. (2007), "A new fracture mechanics theory for orthotropic materials like wood", Eng. Fract. Mech., 74(5), 771-781. https://doi.org/10.1016/j.engfracmech.2006.06.015.   DOI
64 Wang, D., Lin, L., Fu, F. and Fan, M. (2019), "The softwood fracture mechanisms at the scales of the growth ring and cell wall under bend loading", Wood Sci. Technol., 53(6), 1295-1310. https://doi.org/10.1007/s00226-019-01132-w.   DOI
65 Williams, M.L. (1961), The bending stress distribution at the base of a stationary crack. https://doi.org/10.1115/1.3640470   DOI
66 Wu, E.M. (1967), Application of fracture mechanics to anisotropic plates. https://doi.org/10.1115/1.3607864   DOI