Browse > Article
http://dx.doi.org/10.12989/scs.2021.39.3.319

Improving the axial compression capacity prediction of elliptical CFST columns using a hybrid ANN-IP model  

Tran, Viet-Linh (Department of Civil and Environmental Engineering, Sejong University)
Jang, Yun (Department of Computer Engineering, Sejong University)
Kim, Seung-Eock (Department of Civil and Environmental Engineering, Sejong University)
Publication Information
Steel and Composite Structures / v.39, no.3, 2021 , pp. 319-335 More about this Journal
Abstract
This study proposes a new and highly-accurate artificial intelligence model, namely ANN-IP, which combines an interior-point (IP) algorithm and artificial neural network (ANN), to improve the axial compression capacity prediction of elliptical concrete-filled steel tubular (CFST) columns. For this purpose, 145 tests of elliptical CFST columns extracted from the literature are used to develop the ANN-IP model. In this regard, axial compression capacity is considered as a function of the column length, the major axis diameter, the minor axis diameter, the thickness of the steel tube, the yield strength of the steel tube, and the compressive strength of concrete. The performance of the ANN-IP model is compared with the ANN-LM model, which uses the robust Levenberg-Marquardt (LM) algorithm to train the ANN model. The comparative results show that the ANN-IP model obtains more magnificent precision (R2 = 0.983, RMSE = 59.963 kN, a20 - index = 0.979) than the ANN-LM model (R2 = 0.938, RMSE = 116.634 kN, a20 - index = 0.890). Finally, a new Graphical User Interface (GUI) tool is developed to use the ANN-IP model for the practical design. In conclusion, this study reveals that the proposed ANN-IP model can properly predict the axial compression capacity of elliptical CFST columns and eliminate the need for conducting costly experiments to some extent.
Keywords
artificial neural network; axial compression capacity; elliptical concrete-filled steel tubular column; interior-point algorithm; graphical user interface;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020b), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.12989/scs.2020.35.3.415.   DOI
2 Ding, F.X., Yu, Z.W., Bai, Y, and Gong, Y.Z. (2011), "Elastoplastic analysis of circular concrete-filled steel tube stub columns", J. Constr. Steel Res., 67, 1567-1577. https://doi.org/10.1016/j.jcsr.2011.04.001.   DOI
3 Duan, J., Asteris, P/G., Nguyen, H. and Bui, X.N. (2020), A novel artifcial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model.pdf.
4 Elbaz, K., et al. (2019), "Optimization of EPB shield performance with adaptive neuro-fuzzy inference system and genetic algorithm", Appl. Sci., 9, 1-17. https://doi.org/10.3390/app9040780.   DOI
5 Shen, Q.H., Wang, J.F., Wang, W. and Wang, J. (2015), "Axial Compressive Behavior and Bearing Capacity Calculation of ECFST Columns Based on Numerical Analysis", Prog. Steel Buid. Struct., https://doi.org/ 10.13969/j.cnki.cn31-1893.2015.06.009.   DOI
6 Guo, K. and Yang, G. (2020), "Load - slip curves of shear connection in composite structures : prediction based on ANNs", Steel Compos. Struct., 36(5), 493-506. https://doi.org/10.12989/scs.2020.36.5.493.   DOI
7 Espinos, A., Gardner, L., Romero, M.L. and Hospitaler, A. (2011), "Fire behaviour of concrete filled elliptical steel columns", Thin-Wall. Struct., 49, 239-255. https://doi.org/10.1016/j.tws.2010.10.008.   DOI
8 Eurocode-4 (2011), Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings. The European Union.
9 Giorgi, G. and Kjeldsen, T.H. (2014), "Traces and emergence of nonlinear programming", Traces Emerg Nonlinear Program, 1-434. https://doi.org/10.1007/978-3-0348-0439-4.
10 Nguyen, D.D., et al. (2021), "A machine learning-based formulation for predicting shear capacity of squat flanged RC walls", Structures, 29, 1734-1747. https://doi.org/10.1016/j.istruc.2020.12.054.   DOI
11 Nikbin, I.M., Rahimi, S. and Allahyari, H. (2017), "A new empirical formula for prediction of fracture energy of concrete based on the artificial neural network", Eng. Fract. Mech., 186, 466-482. https://doi.org/10.1016/j.engfracmech.2017.11.010.   DOI
12 Ranganathan, A. (2004), The Levenberg-Marquardt Algorithm 3 LM as a blend of Gradient descent and Gauss-Newton itera. Internet httpexcelsior cs ucsb educoursescs290ipdfL MA pdf 142:1-5.
13 Ren, Q.X., Han, L.H., Lam, D. and Li, W. (2014), "Tests on elliptical concrete filled steel tubular (CFST) beams and columns", J. Constr. Steel Res., 99, 149-160. https://doi.org/10.1016/j.jcsr.2014.03.010.   DOI
14 Roman, N.D., Bre, F., Fachinotti, V.D. and Lamberts, R. (2020), "Application and characterization of metamodels based on artificial neural networks for building performance simulation: A systematic review", Energy Build., 217, 109972. https://doi.org/10.1016/j.enbuild.2020.109972.   DOI
15 Hasanipanah, M., Noorian-Bidgoli, M., Jahed Armaghani, D. and Khamesi, H. (2016), "Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling", Eng. Comput., 32, 705-715. https://doi.org/10.1007/s00366-016-0447-0.   DOI
16 Britto, A.S.F., Raj, R.E. and Mabel, M.C. (2018), "Prediction and optimization of mechanical strength of diffusion bonds using integrated ANN-GA approach with process variables and metallographic characteristics", J. Manuf. Process., 32, 828-838. https://doi.org/10.1016/j.jmapro.2018.04.015.   DOI
17 Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084.   DOI
18 Shao, Z., et al. (2019), "Estimating the friction angle of black shale core specimens with hybrid-ANN approaches", Meas. J. Int. Meas. Confed., 145, 744-755. https://doi.org/10.1016/j.measurement.2019.06.007.   DOI
19 Hassanein, M.F., et al. (2018), "Structural behaviour and design of elliptical high-strength concrete-filled steel tubular short compression members", Eng. Struct., 173, 495-511. https://doi.org/10.1016/j.engstruct.2018.07.023.   DOI
20 Uenaka, K. (2014), "Experimental study on concrete filled elliptical/oval steel tubular stub columns under compression", Thin-Wall. Struct., 78, 131-137. https://doi.org/10.1016/j.tws.2014.01.023.   DOI
21 Wang, J., Shen, Q., Jiang, H. and Pan, X. (2018), "Analysis and Design of Elliptical Concrete-Filled Thin-Walled Steel Stub Columns Under Axial Compression", Int. J. Steel Struct., 18, 365-380. https://doi.org/10.1007/s13296-018-0002-5.   DOI
22 Xu, Y. and Yao, J. (2017), "Axial Bearing Capacity of Elliptical Concrete Filled Steel Tubular Stub Columns", IOP Conf Ser Mater Sci Eng 220. https://doi.org/10.1088/1757-899X/220/1/012002   DOI
23 Yang, H., Lam, D. and Gardner, L. (2008), "Testing and analysis of concrete-filled elliptical hollow sections", Eng. Struct., 30, 3771-3781. https://doi.org/10.1016/j.engstruct.2008.07.004   DOI
24 Liu, X. and Zha, X. (2011), Study on Behavior of Elliptical Concrete Filled Steel Tube Members I:Stub and Long Columns under Axial Compression. Prog Steel Build Struct.
25 Nguyen, H.Q., et al. (2020a), "Optimization of artificial intelligence system by evolutionary algorithm for prediction of axial capacity of rectangular concrete filled steel tubes under compression", Materials (Basel), 13. https://doi.org/10.3390/MA13051205.   DOI
26 Yang, H., Liu, F., Chan, T. and Wang, W. (2017), "Behaviours of concrete-filled cold-formed elliptical hollow section beam-columns with varying aspect ratios", Thin-Wall. Struct., 120, 9-28. https://doi.org/10.1016/j.tws.2017.08.018.   DOI
27 Zhang, H., et al. (2020), "Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm", Resour. Policy, 66, 101604. https://doi.org/10.1016/j.resourpol.2020.101604.   DOI
28 Liu, F., Wang, Y. and Chan, T.M. (2017), "Behaviour of concrete-filled cold-formed elliptical hollow sections with varying aspect ratios", Thin-Wall. Struct., 110, 47-61. https://doi.org/10.1016/j.tws.2016.10.013.   DOI
29 Liu, L., et al. (2020b), "Optimizing an ANN model with genetic algorithm (GA) predicting load-settlement behaviours of eco-friendly raft-pile foundation (ERP) system", Eng. Comput., 36, 421-433. https://doi.org/10.1007/s00366-019-00767-4.   DOI
30 Ly, H.B., et al. (2020), "Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models", Neural Comput. Appl., 0123456789: https://doi.org/10.1007/s00521-020-05214-w.   DOI
31 Mahgub, M., Ashour, A., Lam, D. and Dai, X. (2017), "Tests of self-compacting concrete filled elliptical steel tube columns", Thin-Wall. Struct., 110, 27-34. https://doi.org/10.1016/j.tws.2016.10.015.   DOI
32 MATLAB (2018), MATLAB R2018b
33 McCann, F., et al. (2015), Concrete-filled elliptical section steel columns under concentric and eccentric loading. https://doi.org/10.13140/RG.2.1.1257.5845   DOI
34 Arora, R.K. (2016), Optimization: algorithms and applications.
35 Apostolopoulou, M., et al. (2020), "On the metaheuristic models for the prediction of cement- metakaolin mortars compressive strength", Metaheuristic Comput. Appl., 1, 63-99.
36 Ardakani, A., Dinarvand, R. and Namaei, A. (2020), "Ultimate Shear Resistance of Silty Sands Improved by Stone Columns Estimation Using Neural Network and Imperialist Competitive Algorithm", Geotech. Geol. Eng., 38, 1485-1496. https://doi.org/10.1007/s10706-019-01104-8.   DOI
37 Armaghani, D.J. and Asteris, P.G. (2020), "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength. Springer London.
38 Moayedi, H., Mu'azu, M.A. and Kok Foong, L. (2019), "Swarm-based analysis through social behavior of grey wolf optimization and genetic programming to predict friction capacity of driven piles", Eng. Comput., https://doi.org/10.1007/s00366-019-00885-z.   DOI
39 Naderpour, H. and Mirrashid, M. (2020), "Proposed soft computing models for moment capacity prediction of reinforced concrete columns", Soft Comput., 8. https://doi.org/10.1007/s00500-019-04634-8   DOI
40 Armaghani, D.J., et al. (2019), "Soft computing-based techniques for concrete beams shear strength", Procedia Struct. Integr., 17, 924-933. https://doi.org/10.1016/j.prostr.2019.08.123.   DOI
41 AS 5100-6 (2004), Australian Standard 5100-6: Bridge Design, Steel and composite construction. 04:269.
42 Asteris, P.G., Apostolopoulou, M., Skentou, A.D. and Moropoulou, A. (2019), "Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars", Comput. Concrete, 24(4), 329-345. https://doi.org/10.12989/cac.2019.24.4.329.   DOI
43 Asteris, P.G. and Mokos, V.G. (2019), "Concrete compressive strength using artificial neural networks", Neural Comput. Appl., 2. https://doi.org/10.1007/s00521-019-04663-2.   DOI
44 Boggs, P.T. and Tolle, J.W. (1995), "Sequential Quadratic Programming", Acta Numer., 4, 1-51. https://doi.org/10.1017/S0962492900002518.   DOI
45 Chan, T.M., Gardner, L. and Law, K.H. (2010), "Structural design of elliptical hollow sections: A review", Proc. Inst. Civ. Eng. Struct. Build., 163, 391-402. https://doi.org/10.1680/stbu.2010.163.6.391.   DOI
46 Tran, V.L. and Kim, S.E. (2020a), "Efficiency of three advanced data-driven models for predicting axial compression capacity of CFDST columns", Thin-Wall. Struct., 152. https://doi.org/10.1016/j.tws.2020.106744.   DOI
47 Shukla, A.K., Janmaijaya, M., Abraham, A. and Muhuri, P.K. (2019), "Engineering applications of artificial intelligence: A bibliometric analysis of 30 years (1988-2018)", Eng. Appl. Artif. Intel., 85, 517-532. https://doi.org/10.1016/j.engappai.2019.06.010.   DOI
48 Solati, A., Hamedi, M. and Safarabadi, M. (2019), "Combined GA-ANN approach for prediction of HAZ and bearing strength in laser drilling of GFRP composite", Opt Laser Technol., 113, 104-115. https://doi.org/10.1016/j.optlastec.2018.12.016.   DOI
49 Tran, V.L., Thai, D.K. and Kim, S.E. (2019a), "Application of ANN in predicting ACC of SCFST column", Compos. Struct., 228. https://doi.org/10.1016/j.compstruct.2019.111332.   DOI
50 Tran, V.L. and Kim, S.E. (2020b), "A practical ANN model for predicting the PSS of two-way reinforced concrete slabs", Eng. Comput., https://doi.org/10.1007/s00366-020-00944-w.   DOI
51 Tran, V.L., Thai, D.K. and Kim, S.E. (2019b), "A new empirical formula for prediction of the axial compression capacity of CCFT columns", Steel Compos. Struct., 33(2), 181-194. https://doi.org/10.12989/scs.2019.33.2.181.   DOI
52 Koopialipoor, M., et al. (2020), "Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance", Eng. Comput., 36, 345-357. https://doi.org/10.1007/s00366-019-00701-8.   DOI
53 Jamaluddin, N., Lam, D., Dai, X.H. and Ye, J. (2013), "An experimental study on elliptical concrete filled columns under axial compression", J. Constr. Steel Res., 87, 6-16. https://doi.org/10.1016/j.jcsr.2013.04.002.   DOI
54 Karina, C.N.N., Chun, P. and Okubo, K. (2017), "Tensile strength prediction of corroded steel plates by using machine learning approach", Steel Compos. Struct., 24(5), 635-641. https://doi.org/10.12989/scs.2017.24.5.635.   DOI
55 Kojima, M., Megiddo, N. and Mizuno, S. (1993), "A primal-dual infeasible-interior-point algorithm for linear programming", Math. Program, 61, 263-280. https://doi.org/10.1007/BF01582151.   DOI
56 Koopialipoor, M., et al. (2019), "Developing a new intelligent technique to predict overbreak in tunnels using an artificial bee colony-based ANN", Environ. Earth Sci., 78, https://doi.org/10.1007/s12665-019-8163-x.   DOI
57 Kwon, S.J. (2011), Artificial neural networks
58 Lam, D., Gardner, L. and Burdett, M. (2010), "Behaviour of axially loaded concrete filled stainless steel elliptical stub columns", Adv. Struct. Eng., 13, 493-500. https://doi.org/10.1260/1369-4332.13.3.493.   DOI
59 Le, T.T. (2020), "Surrogate neural network model for prediction of load-bearing capacity of cfss members considering loading eccentricity", Appl. Sci., 10. https://doi.org/10.3390/app10103452.   DOI
60 Tran, V.L., Thai, D.K. and Nguyen, D.D. (2020), "Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete", Thin-Wall. Struct., 151. https://doi.org/10.1016/j.tws.2020.106720.   DOI
61 Zhao, X.L. and Packer, J.A. (2009), "Tests and design of concrete-filled elliptical hollow section stub columns", Thin-Wall. Struct., 47, 617-628. https://doi.org/10.1016/j.tws.2008.11.004.   DOI
62 Zhou, G., Moayedi, H. and Foong, L.K. (2020), "Teaching-learning-based metaheuristic scheme for modifying neural computing in appraising energy performance of building", Eng. Comput., https://doi.org/10.1007/s00366-020-00981-5.   DOI
63 Dai, X. and Lam, D. (2010a), "Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections", Steel Compos. Struct., 10(6), 517-539. https://doi.org/10.12989/scs.2010.10.6.517.   DOI
64 Chan, T.M., Huai, Y.M. and Wang, W. (2015), "Experimental investigation on lightweight concrete-filled cold-formed elliptical hollow section stub columns", J. Constr. Steel Res., 115, 434-444. https://doi.org/10.1016/j.jcsr.2015.08.029.   DOI
65 Chen, H., et al. (2019), "Assessing dynamic conditions of the retaining wall: Developing two hybrid intelligent models", Appl. Sci., 9, https://doi.org/10.3390/app9061042.   DOI
66 Chen, X.L., Fu, J.P., Yao, J.L. and Gan, J.F. (2018), "Prediction of shear strength for squat RC walls using a hybrid ANN-PSO model", Eng. Comput., 34, 367-383. https://doi.org/10.1007/s00366-017-0547-5.   DOI
67 Dai, X.H., Lam, D., Jamaluddin, N. and Ye, J. (2014), "Numerical analysis of slender elliptical concrete filled columns under axial compression", Thin-Wall. Struct., 77, 26-35. https://doi.org/10.1016/j.tws.2013.11.015.   DOI
68 Liu, A., et al. (2020a), "Prediction of mechanical properties of micro-alloyed steels via neural networks learned by water wave optimization", Neural Comput. Appl., 32, 5583-5598. https://doi.org/10.1007/s00521-019-04149-1.   DOI
69 Zorlu, K., et al. (2008), "Prediction of uniaxial compressive strength of sandstones using petrography-based models", Eng. Geol., 96, 141-158. https://doi.org/10.1016/j.enggeo.2007.10.009.   DOI
70 Dai, X. and Lam, D. (2010b), "Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns", J. Constr. Steel Res., 66, 931-942. https://doi.org/10.1016/j.jcsr.2010.02.003.   DOI
71 Degtyarev, V.V. (2020), "Neural networks for predicting shear strength of CFS channels with slotted webs", J. Constr. Steel Res., 106443. https://doi.org/10.1016/j.jcsr.2020.106443.   DOI
72 Devikanniga, D., Vetrivel, K. and Badrinath, N. (2019), "Review of meta-heuristic optimization based artificial neural networks and its applications", J. Phys. Conf. Ser., 1362, https://doi.org/10.1088/1742-6596/1362/1/012074.   DOI
73 AISC (2016), Specification for Structural Steel Buildings, ANSI / AISC 360-16. Am Inst Steel Constr 676
74 Shariati, M., et al. (2020), "A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques", Eng. Comput., https://doi.org/10.1007/s00366-019-00930-x   DOI
75 Sheehan, T., Dai, X.H., Chan, T.M. and Lam, D. (2012), "Structural response of concrete-filled elliptical steel hollow sections under eccentric compression", Eng. Struct., 45, 314-323. https://doi.org/10.1016/j.engstruct.2012.06.040.   DOI
76 ACI 318-14 (2014), ACI 318-14 - Building Code Requirements for Structural Concrete
77 Ahmed, M. and Liang, Q.Q. (2020), "Computational simulation of elliptical concrete-filled steel tubular short columns including new confinement model", J. Constr. Steel Res., 174, 106294. https://doi.org/10.1016/j.jcsr.2020.106294.   DOI
78 AISC (2016), Specification for Structural Steel Buildings, ANSI / AISC 360-16. Am Inst Steel Constr 676
79 ACI 318-14 (2014), ACI 318-14 - Building Code Requirements for Structural Concrete.
80 Ahmed, M. and Liang, Q.Q. (2020), "Computational simulation of elliptical concrete-filled steel tubular short columns including new confinement model", J. Constr. Steel Res., 174, 106294. https://doi.org/10.1016/j.jcsr.2020.106294.   DOI
81 Albuquerque, J.S., et al. (1997), "Interior point SQP strategies for structured process optimization problems", Comput. Chem. Eng., 21, 853-859. https://doi.org/10.1016/s0098-1354(97)87609-0.   DOI
82 Andrei, N. (2017), Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology.