Browse > Article
http://dx.doi.org/10.12989/scs.2020.35.3.415

Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network  

Nguyen, Mai-Suong T. (Department of Civil and Environmental Engineering, Sejong University)
Thai, Duc-Kien (Department of Civil and Environmental Engineering, Sejong University)
Kim, Seung-Eock (Department of Civil and Environmental Engineering, Sejong University)
Publication Information
Steel and Composite Structures / v.35, no.3, 2020 , pp. 415-437 More about this Journal
Abstract
Circular concrete filled steel tube (CFST) columns have an advantage over all other sections when they are used in compression members. This paper proposes a new approach for deriving a new empirical equation to predict the axial compressive capacity of circular CFST columns using the Artificial Neural Network (ANN). The developed ANN model uses 5 input parameters that include the diameter of circular steel tube, the length of the column, the thickness of steel tube, the steel yield strength and the compressive strength of concrete. The only output parameter is the axial compressive capacity. Training and testing the developed ANN model was carried out using 219 available sets of data collected from the experimental results in the literature. An empirical equation is then proposed as an important result of this study, which is practically used to predict the axial compressive capacity of a circular CFST column. To evaluate the performance of the developed ANN model and the proposed equation, the predicted results are compared with those of the empirical equations stated in the current design codes and other models. It is shown that the proposed equation can predict the axial compressive capacity of circular CFST columns more accurately than other methods. This is confirmed by the high accuracy of a large number of existing test results. Finally, the parametric study result is analyzed for the proposed ANN equation to consider the effect of the input parameters on axial compressive strength.
Keywords
axial compressive capacity; concrete filled steel tube; empirical equation; artificial neural network; parametric study;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Goode, C.D. (2008), "Composite Columns-1819 Tests on Concrete-Filled Steel Tube Columns Compared with Eurocode 4", Inst. Struct. Eng., 86, 33-38.
2 Gupta, P.K., Sarda, S.M. and Kumar, M.S. (2007), "Experimental and computational study of concrete filled steel tubular columns under axial loads", J. Constr. Steel Res., 63(2), 182-193.   DOI
3 Hasan, H.G., Ekmekyapar, T. and Shehab, B.A. (2019), "Mechanical performances of stiffened and reinforced concretefilled steel tubes under axial compression", Mar. Struct., 65, 417-432. https://doi.org/10.1016/j.marstruc.2018.12.008.   DOI
4 Hayashi, F. (1990), Study on mechanical behavior of circular confined concrete column under axial compression. Kyushu University.
5 Hwang, H.J., Baek, J.W., Kim, J.Y. and Kim, C.S. (2019), "Prediction of bond performance of tension lap splices using artificial neural networks", Eng. Struct., 198, 109535. https://doi.org/10.1016/j.engstruct.2019.109535.   DOI
6 Ioffe, S. (2017), "Batch renormalization: Towards reducing minibatch dependence in batch-normalized models", Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
7 Kang, J.Y., Choi, B.I. and Lee, H.J. (2006), "Application of artificial neural network for predicting plain strain fracture toughness using tensile test results", Fatigue Fract. Eng. Mater. Struct., 29(4), 321-329. https://doi.org/10.1111/j.1460-2695.2006.00994.x.   DOI
8 Ketkar, N., (2017), Deep Learning with Python-A Hands-on Introduction. https://doi.org/10.1007/978-1-4842-2766-4.
9 Larocca, C.B., Farias, C.T.T., Simas Filho, E.F. and Silva, I.C. (2018), "Wall thinning characterization of composite reinforced steel tube using frequency-domain PEC technique and neural networks", J. Nondestruct. Eval., 37(3), 1-8. https://doi.org/10.1007/s10921-018-0477-1.   DOI
10 Lee, S. and Lee, C. (2014), "Prediction of shear strength of FRP-reinforced concrete flexural members without stirrups using artificial neural networks", Eng. Struct., 61, 99-112. https://doi.org/10.1016/j.engstruct.2014.01.001.   DOI
11 Li, Y., Han, L., Xu, W. and Tao, Z. (2016), "Circular concreteencased concrete-filled steel tube (CFST) stub columns subjected to axial compression", Mag. Concr. Res., 68(19), 995-1010. https://doi.org/10.1680/jmacr.15.00359.   DOI
12 Lin, C.Y. (1988), "Axial capacity of concrete infilled cold-formed steel columns", Proceedings of the 9th International Specialty Conference on Cold-Formed Steel Structures, 443-457. St. Louis, Missouri, U.S.A.
13 Luat, N.V., Lee, K. and Thai, D.K. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.   DOI
14 Luat, N.V., Lee, J., Lee, D.H. and Lee, K. (2020), "GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading", Comput. Concret., 25(1), 1-14. https://doi.org/10.12989/cac.2020.25.1.001.   DOI
15 Luksha, L.K. and Nesterovich, A.P. (1991), "Strength testing of large-diameter concrete filled steel tubular members", Proceedings of the Third International Conference on Steel-Concrete Composite Structures, ASCCS, Fukuoka, 67-70.
16 Moon, J., Kim, J.J., Lee, T.H. and Lee, H.E. (2014), "Prediction of axial load capacity of stub circular concrete-filled steel tube using fuzzy logic", J. Constr. Steel Res., 101, 184-191.   DOI
17 Nikoo, M., Zarfam, P. and Sayahpour, H. (2013), "Determination of compressive strength of concrete using Self Organization Feature Map (SOFM)", Eng. Comput., 31(1), 113-121. https://doi.org/10.1007/s00366-013-0334-x.
18 Knowles, R.B. and Park, R. (1970), "Axial load design for concrete filled steel tubes", J. Struct. Div., 96(10), 2125-2153.   DOI
19 Oliveira, W.L.A. (2008), Theoretical-experimental analysis of circular concrete filled steel columns, Doctoral thesis. Sao Carlos School.
20 O'Shea, M.D. and Bridge, R.Q. (2000), "Design of Circular Thin-Walled Concrete Filled Steel Tubes", J. Struct. Eng., 126(11), 1295-1303.   DOI
21 Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188.   DOI
22 Salani, H.J. and Sims, J.R. (1964), "Behavior of Mortar Filled Steel Tubes in Compression", J. Proceedings, 1271-1284.
23 Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:10(1202).   DOI
24 Shanmugam, N.E. and Lakshmi, B. (2001), "State of the art report on steel-concrete composite columns", J. Constr. Steel Res., 57(10), 1041-1080. https://doi.org/10.1016/S0143-974X(01)00021-9.   DOI
25 Tang, C.W. (2017), "Fire resistance of high strength fiber reinforced concrete filled box columns", Steel Compos. Struct., 23(5), 611-621. https://doi.org/10.12989/scs.2017.23.5.611.   DOI
26 Tao, Z., Han, L.H. and Wang, L.L. (2007), "Compressive and flexural behaviour of CFRP-repaired concrete-filled steel tubes after exposure to fire", J. Constr. Steel Res., 63(8), 1116-1126. https://doi.org/10.1016/j.jcsr.2006.09.007.   DOI
27 AIJ. Recommendations for design and construction of concrete filled steel tubular structures, (1997). Architectural Institute of Japan, Tokyo.
28 Tomii, M. (1977), "Experimental studies on concrete filled steel tubular stud columns under concentric loading", Proceedings of the International Colloquium on Stability of Structures Under Static and Dynamic Loads, 718-741. Washington, DC.
29 Uy, B. (2001), "Strength of short concrete filled high strength steel box columns", J. Constr. Steel Res., 57(2), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6.   DOI
30 Abed, F., Alhamaydeh, M. and Abdalla, S. (2013), "Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)", J. Constr. Steel Res., 80, 429-439. https://doi.org/10.1016/j.jcsr.2012.10.005.   DOI
31 Altun, F., Kisi, O. and Aydin, K. (2008), "Predicting the compressive strength of steel fiber added lightweight concrete using neural network", Comput. Mater. Sci., 42(2), 259-265.   DOI
32 American concrete institute, (1962), ACI 318. Building code requirements for structural concrete and commentary (Vol. 552). USA.
33 Aslani, F., Lloyd, R., Uy, B., Kang, W.H. and Hicks, S., (2016), "Statistical calibration of safety factors for flexural stiffness of composite columns", Steel Compos. Struct., 20(1), 127-145. https://doi.org/10.12989/scs.2016.20.1.127.   DOI
34 Aslani, F., Uy, B., Tao, Z. and Mashiri, F., (2015), "Predicting the axial load capacity of high-strength concrete filled steel tubular columns", Steel Compos. Struct., 19(4), 967-993. https://doi.org/10.12989/scs.2015.19.4.967.   DOI
35 Aslani, F., Uy, B., Wang, Z. and Patel, V., (2016), "Confinement models for high strength short square and rectangular concretefilled steel tubular columns", Steel Compos. Struct., 22(5), 937-974. https://doi.org/10.12989/scs.2016.22.5.937.   DOI
36 Yamamoto, T., Kawaguchi, J. and Morino, S., (2000), "Scale Effects on Compressive Behavior of Concrete-Filled Steel Tube Short Columns", Compos. Constr. Steel Concr. IV, 25, 27-44. https://doi.org/10.1061/40616(281)76.
37 Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.W. (2002), "Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns", J. Constr. Steel Res., 58(5-8), 725-758. https://doi.org/10.1016/S0143-974X(01)00099-2.   DOI
38 Wang, L., Cao, X.X., Ding, F.X., Luo, L., Sun, Y., Liu, X.M., and Su, H.L. (2018), "Composite action of concrete-filled double circular steel tubular stub columns", Steel Compos. Struct., 29(1), 77-90. https://doi.org/10.12989/scs.2018.29.1.077.   DOI
39 Xiao, Y. (1989), Experimental Study and Analytical Modeling of Triaxial Compressive Behavior of Confined Concrete, Ph.D. Thesis, Kyushu University, Fukuoka, Japan.
40 Yaseen, Z.M., Tran, M.T., Kim, S., Bakhshpoori, T. and Deo, R.C. (2018), "Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: A new approach", Eng. Struct., 177, 244-255.   DOI
41 Yoshioka, K., Inai, E., Hukumoto,N., Kai, M. and Murata, Y. (1995), "Compressive Tests on CFT Short Columns Part 1: Circular CFT Columns", Proceedings of the 2nd Jt. Tech. Coord. Comm. Compos. Hybrid Struct. Phase 5 Compos. Hybrid Struct.
42 Duan, Z.H., Kou, S.C. and Poon, C.S. (2013), "Prediction of compressive strength of recycled aggregate concrete using artificial neural networks", Constr. Build. Mater., 40, 1200-1206. https://doi.org/10.1016/j.conbuildmat.2012.04.063.   DOI
43 Yu, Q., Tao, Z. and Wu, Y.X. (2008), "Experimental behaviour of high performance concrete-filled steel tubular columns", Thin-Wall. Struct., 46(4), 362-370.   DOI
44 Zeghiche, J. and Chaoui, K. (2005), "An experimental behaviour of concrete-filled steel tubular columns", J. Constr. Steel Res., 61(1), 53-66. https://doi.org/10.1016/j.jcsr.2004.06.006.   DOI
45 Furlong, R.W. (1967), "Strength of steel-encased concrete beam columns", J. Struct. Div.
46 Beck, A.T., de Oliveira, W.L.A., De Nardim, S. and ElDebs, A.L. H. C., (2009), "Reliability-based evaluation of design code provisions for circular concrete-filled steel columns", Eng. Struct., 31(10), 2299-2308. https://doi.org/10.1016/j.engstruct.2009.05.004.   DOI
47 Cheng, M.Y. and Cao, M.T. (2014), "Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams", Eng. Appl. Artif. Intell., 28, 86-96.   DOI
48 Dantas, A.T.A., Batista Leite, M. and De Jesus Nagahama, K. (2013), "Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks", Constr. Build. Mater., 38, 717-722. https://doi.org/10.1016/j.conbuildmat.2012.09.026.   DOI
49 Das, S. and Choudhury, S. (2019), "Influence of effective stiffness on the performance of RC frame buildings designed using displacement-based method and evaluation of column effective stiffness using ANN", Eng. Struct., 197, 109354. https://doi.org/10.1016/j.engstruct.2019.109354.   DOI
50 Ekmekyapar, T. and Ghanim Hasan, H. (2019), "The influence of the inner steel tube on the compression behaviour of the concrete filled double skin steel tube (CFDST) columns", Mar. Struct., 66, 197-212. https://doi.org/10.1016/j.marstruc.2019.04.006.   DOI
51 Eurocode 4: Design of composite steel and concrete structures. Part 1.1, General rules and rules for buildings. EN 1994-1-1:2004, (2004). Brussels.
52 Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.   DOI