Browse > Article
http://dx.doi.org/10.12989/scs.2019.33.2.181

A new empirical formula for prediction of the axial compression capacity of CCFT columns  

Tran, Viet-Linh (Department of Civil and Environmental Engineering, Sejong University)
Thai, Duc-Kien (Department of Civil and Environmental Engineering, Sejong University)
Kim, Seung-Eock (Department of Civil and Environmental Engineering, Sejong University)
Publication Information
Steel and Composite Structures / v.33, no.2, 2019 , pp. 181-194 More about this Journal
Abstract
This paper presents an efficient approach to generate a new empirical formula to predict the axial compression capacity (ACC) of circular concrete-filled tube (CCFT) columns using the artificial neural network (ANN). A total of 258 test results extracted from the literature were used to develop the ANN models. The ANN model having the highest correlation coefficient (R) and the lowest mean square error (MSE) was determined as the best model. Stability analysis, sensitivity analysis, and a parametric study were carried out to estimate the stability of the ANN model and to investigate the main contributing factors on the ACC of CCFT columns. Stability analysis revealed that the ANN model was more stable than several existing formulae. Whereas, the sensitivity analysis and parametric study showed that the outer diameter of the steel tube was the most sensitive parameter. Additionally, using the validated ANN model, a new empirical formula was derived for predicting the ACC of CCFT columns. Obviously, a higher accuracy of the proposed empirical formula was achieved compared to the existing formulae.
Keywords
artificial neural network; axial compression capacity; circular concrete-filled tube; empirical formula;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Huang, C., Yeh, Y.-K., Liu, G.-Y., Hu, H.-T., Tsai, K., Weng, Y., Wang, S. and Wu, M.-H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng., 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222)   DOI
2 Janss, J. (1974), Charges ultimes des profils creux remplis de beton charges axialement, Centre de Recherches Scientifiques et Techniques de l'Industrie des Fabrications Metalliques
3 Jazayeri, K., Jazayeri, M. and Uysal, S. (2016), "Comparative analysis of Levenberg-Marquardt and Bayesian regularization backpropagation algorithms in photovoltaic power estimation using artificial neural network", Industrial Conference on Data Mining. https://doi.org/10.1007/978-3-319-41561-1_7
4 Johansson, M. (2002), "The efficiency of passive confinement in CFT columns", Steel Compos. Struct., Int. J., 2(5), 379-396. https://doi.org/10.12989/scs.2002.2.5.379   DOI
5 Johnson, R.P. and Anderson, D. (2004), Designers' Guide to EN 1994-1-1: Eurocode 4: Design of Composite Steel and Concrete Structures. General Rules and Rules for Buildings, Thomas Telford.
6 Kang, H., Lim, S. and Moon, T. (2002), "Behavior of CFT stub columns filled with PCC on concentrically compressive load", J. Architect. Inst. Korea, 18(9), 21-28.
7 Kao, C.-S. and Yeh, I. (2014), "Optimal design of plane frame structures using artificial neural networks and ratio variables", Struct. Eng. Mech., Int. J., 52(4), 739-753. https://doi.org/10.12989/sem.2014.52.4.739   DOI
8 Wu, X., Ghaboussi, J. and Garrett Jr, J. (1992), "Use of neural networks in detection of structural damage", Comput. Struct., 42(4), 649-659. https://doi.org/10.1016/0045-7949(92)90132-J   DOI
9 Xue, J.-Q., Briseghella, B. and Chen, B.-C. (2012), "Effects of debonding on circular CFST stub columns", J. Constr. Steel Res., 69(1), 64-76. https://doi.org/10.1016/j.jcsr.2011.08.002   DOI
10 Luksha, L. and Nesterovich, A. (1991), "Strength testing of largediameter concrete filled steel tubular members", Proceedings of the Third International Conference on Steel-Concrete Composite Structures, Wakabayashi, M.(ed.), Fukuoka, Japan, Association for International Cooperation and Research in Steel-Concrete Composite Structures.
11 MacKay, D.J. (1992), "Bayesian interpolation", Neural Computat., 4(3), 415-447. https://doi.org/10.1162/neco.1992.4.3.415   DOI
12 Mandal, P. (2017), "Artificial neural network prediction of buckling load of thin cylindrical shells under axial compression", Eng. Struct., 152, 843-855. https://doi.org/10.1016/j.engstruct.2017.09.016   DOI
13 Mikami, I., Tanaka, S. and Hiwatashi, T. (1998), "Neural Network System for Reasoning Residual Axial Forces of High-Strength Bolts in Steel Bridges", Comput.-Aided Civil Infra. Eng., 13(4), 237-246. https://doi.org/10.1111/0885-9507.00102   DOI
14 Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., Int. J., 46(6), 853-868. https://doi.org/10.12989/sem.2013.46.6.853   DOI
15 Mukherjee, A., Deshpande, J. and Anmala, J. (1996), "Prediction of buckling load of columns using artificial neural networks", J. Struct. Eng., 122(11), 1385-1387. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1385)   DOI
16 Adeli, H. (2001), "Neural networks in civil engineering: 1989-2000", Comput.-Aided Civil Infra. Eng., 16(2), 126-142. https://doi.org/10.1111/0885-9507.00219   DOI
17 Yu, Z.-w., Ding, F.-x. and Cai, C. (2007), "Experimental behavior of circular concrete-filled steel tube stub columns", J. Constr. Steel Res., 63(2), 165-174. https://doi.org/10.1016/j.jcsr.2006.03.009   DOI
18 Adeli, H. and Karim, A. (1997), "Neural network model for optimization of cold-formed steel beams", J. Struct. Eng., 123(11), 1535-1543. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:11(1535)   DOI
19 AISC Committee (2010), Specification for structural steel buildings (ANSI/AISC 360-10), American Institute of Steel Construction, Chicago, IL, USA.
20 Yamamoto, T., Kawaguchi, J. and Morino, S. (2002), "Experimental study of the size effect on the behavior of concrete filled circular steel tube columns under axial compression", J. Struct. Constr. Eng., 561, 237-244.   DOI
21 Yu, Z., Ding, F. and Lin, S. (2002), "Researches on Behavior of High-performance Concrete Filied Tubular Steel Short Columns [J]", J. Build. Struct., 2.
22 Zhang, S.-m. and Wang, Y.-y. (2004), "Failure modes of short columns of high-strength concrete filled steel tubes", China Civil Eng. J., 37(9), 1-10.   DOI
23 Nikbin, I.M., Rahimi, S. and Allahyari, H. (2017), "A new empirical formula for prediction of fracture energy of concrete based on the artificial neural network", Eng. Fract. Mech., 186, 466-482. https://doi.org/10.1016/j.engfracmech.2017.11.010   DOI
24 Zhang, Y., Fu, G.-Y., Yu, C.-J., Chen, B., Zhao, S.-X. and Li, S.-P. (2016), "Experimental behavior of circular flyash-concrete-filled steel tubular stub columns", Steel Compos. Struct., Int. J., 22(4), 821-835. https://doi.org/10.12989/scs.2016.22.4.821   DOI
25 Naderpour, H., Kheyroddin, A. and Amiri, G.G. (2010), "Prediction of FRP-confined compressive strength of concrete using artificial neural networks", Compos. Struct., 92(12), 2817-2829. https://doi.org/10.1016/j.compstruct.2010.04.008   DOI
26 Nematzadeh, M., Hajirasouliha, I., Haghinejad, A. and Naghipour, M. (2017), "Compressive behaviour of circular steel tubeconfined concrete stub columns with active and passive confinement", Steel Compos. Struct., Int. J., 24(3), 323-337. https://doi.org/10.12989/scs.2017.24.3.323
27 O'Shea, M.D. and Bridge, R.Q. (1994), "Tests of thin-walled concrete-filled steel tubes".
28 Bashir, R. and Ashour, A. (2012), "Neural network modelling for shear strength of concrete members reinforced with FRP bars", Compos. Part B: Eng., 43(8), 3198-3207. https://doi.org/10.1016/j.compositesb.2012.04.011   DOI
29 AS 5100.6 (2004), Bridge design Part 6: Steel and composite construction, AS 5100.6.
30 Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Predicting the axial load capacity of high-strength concrete filled steel tubular columns", Steel Compos. Struct., Int. J., 19(4), 967-993. https://doi.org/10.12989/scs.2015.19.4.967   DOI
31 Beale, M.H., Hagan, M.T. and Demuth, H.B. (1992), Neural Network $Toolbox^{TM}$ User's Guide, The Mathworks Inc.
32 Abed, F., AlHamaydeh, M. and Abdalla, S. (2013), "Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)", J. Constr. Steel Res., 80, 429-439. https://doi.org/10.1016/j.jcsr.2012.10.005   DOI
33 Ekmekyapar, T. and Al-Eliwi, B.J. (2016), "Experimental behaviour of circular concrete filled steel tube columns and design specifications", Thin-Wall. Struct., 105, 220-230. https://doi.org/10.1016/j.tws.2016.04.004   DOI
34 ACI 318-08 (2011), Building Code Requirements for Structural Concrete and Commentary (ACI 318-08).
35 Bradford, M., Loh, H. and Uy, B. (2002), "Slenderness limits for filled circular steel tubes", J. Constr. Steel Res., 58(2), 243-252. https://doi.org/10.1016/S0143-974X(01)00043-8   DOI
36 Cascardi, A., Micelli, F. and Aiello, M.A. (2017), "An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns", Eng. Struct., 140, 199-208. https://doi.org/10.1016/j.engstruct.2017.02.047   DOI
37 Engin, S., Ozturk, O. and Okay, F. (2015), "Estimation of ultimate torque capacity of the SFRC Beams Using ANN", Struct. Eng. Mech., Int. J., 53(5), 939-956. https://doi.org/10.12989/sem.2015.53.5.939   DOI
38 Pendharkar, U., Chaudhary, S. and Nagpal, A. (2011), "Prediction of moments in composite frames considering cracking and time effects using neural network models", Struct. Eng. Mech., Int. J., 39(2), 267-285. https://doi.org/10.12989/sem.2011.39.2.267   DOI
39 O'Shea, M.D. and Bridge, R.Q. (1996), "Circular thin-walled tubes with high strength concrete infill", Composite construction in steel and concrete III, pp. 780-793.
40 O'Shea, M.D. and Bridge, R.Q. (2000), "Design of circular thinwalled concrete filled steel tubes", J. Struct. Eng., 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295)   DOI
41 Roeder, C.W., Lehman, D.E. and Bishop, E. (2010), "Strength and stiffness of circular concrete-filled tubes", J. Struct. Eng., 136(12), 1545-1553. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000263   DOI
42 Saisho, M., Abe, T. and Nakaya, K. (1999), "Ultimate bending strength of high-strength concrete filled steel tube column", J. Struct. Constr. Eng., AIJ, 523(1), 133-140.
43 Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)   DOI
44 Tan, K. (2006), "Analysis of formulae for calculating loading bearing capacity of steel tubular high strength concrete", J. Southwest Univ. Sci. Technol., 21(2), 7-10.   DOI
45 Tashakori, A. and Adeli, H. (2002), "Optimum design of coldformed steel space structures using neural dynamics model", J. Constr. Steel Res., 58(12), 1545-1566. https://doi.org/10.1016/S0143-974X(01)00105-5   DOI
46 Tran, V.-L., Thai, D.-K. and Kim, S.-E. (2019), "Application of ANN in predicting ACC of SCFST column", Compos. Struct., 111332. https://doi.org/10.1016/j.compstruct.2019.111332
47 Gu, W., Guan, C., Zhao, Y. and Cao, H. (2004), "Experimental study on concentrically-compressed circular concrete filled CFRP-steel composite tubular short columns", J. Shenyang Architect. Civil Eng. Univ. (Natural Science), 20(2), 118-120.   DOI
48 Gardner, N.J. and Jacobson, E.R. (1967), "Structural behavior of concrete filled steel tubes", J. Proceedings, 64(7), 404-413.
49 Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001   DOI
50 Goode, C. and Narayanan, R. (1997), "Design of concrete filled steel tubes to EC4", ASCCS Seminar on Concrete Filled Steel Tubes-A Comparison of International Codes and Practice.
51 Han, L.-H. and Yao, G.-H. (2003), "Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes", J. Constr. Steel Res., 59(12), 1455-1475. https://doi.org/10.1016/S0143-974X(03)00102-0   DOI
52 Han, L.-H. and Yao, G.-H. (2004), "Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC)", Thin-Wall. Struct., 42(9), 1357-1377. https://doi.org/10.1016/j.tws.2004.03.016   DOI
53 Han, L.-H., Yao, G.-H. and Zhao, X.-L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Constr. Steel Res., 61(9), 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004   DOI
54 Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8   DOI
55 Hu, Y., Yu, T. and Teng, J. (2011), "FRP-confined circular concrete-filled thin steel tubes under axial compression", J.of Compos. Constr., 15(5), 850-860. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000217   DOI
56 Kato, B. (1996), "Column curves of steel-concrete composite members", J. Constr. Steel Res., 39(2), 121-135. https://doi.org/10.1016/S0143-974X(96)00030-2   DOI
57 Wang, Z.-B., Tao, Z., Han, L.-H., Uy, B., Lam, D. and Kang, W.-H. (2017), "Strength, stiffness and ductility of concrete-filled steel columns under axial compression", Eng. Struct., 135, 209-221. https://doi.org/10.1016/j.engstruct.2016.12.049   DOI
58 Karina, C.N., Chun, P.-j. and Okubo, K. (2017), "Tensile strength prediction of corroded steel plates by using machine learning approach", Steel Compos. Struct., Int. J., 24(5), 635-641. https://doi.org/10.12989/scs.2017.24.5.635
59 Kato, B. (1995), "Strength and Rotation Capacity of Concrete-Filled Tubular Columns, Part 1", J. Struct. Constr. Eng. (Transactions of AIJ), AJI, 468, 183-191.   DOI
60 Khan, Q., Sheikh, M.N. and Hadi, M.N. (2016), "Axial compressive behaviour of circular CFFT: Experimental database and design-oriented model".   DOI
61 Leung, C.K., Ng, M.Y. and Luk, H.C. (2006), "Empirical approach for determining ultimate FRP strain in FRP-strengthened concrete beams", J. Compos. Constr., 10(2), 125-138. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:2(125)   DOI
62 Liao, F.-Y., Han, L.-H. and He, S.-H. (2011), "Behavior of CFST short column and beam with initial concrete imperfection: Experiments", J. Constr. Steel Res., 67(12), 1922-1935. https://doi.org/10.1016/j.jcsr.2011.06.009   DOI
63 Lin, C. (1988), "Axial capacity of concrete infilled cold-formed steel columns".
64 Lin, S., Zhao, Y.-G. and He, L. (2018), "Stress paths of confined concrete in axially loaded circular concrete-filled steel tube stub columns", Eng. Struct., 173, 1019-1028. https://doi.org/10.1016/j.engstruct.2018.06.112   DOI