Browse > Article
http://dx.doi.org/10.12989/scs.2019.32.5.633

Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets  

Xu, Kuo (School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology)
Yuan, Yuan (School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology)
Li, Mingyang (School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology)
Publication Information
Steel and Composite Structures / v.32, no.5, 2019 , pp. 633-642 More about this Journal
Abstract
In this work, lightweight sandwich plates consisting of a functionally graded porous (FGP) core and two laminated composite face sheets resting on elastic foundation have been proposed. Three different profiles are considered for the distributions of porosities along core thickness. The main aim of this paper is the investigation of the buckling behavior of the proposed porous sandwich plates (PSPs) by reporting their critical mechanical loads and their corresponding mode shapes. A finite element method (FEM) based on first order shear deformation theories (FSDT) is developed to discretize governing equations for the buckling behavior of the proposed sandwich plates. The effects of porosity dispersion and volume, the numbers and angles of laminated layers, sandwich plate geometrical dimensions, elastic foundation coefficients, loading and boundary conditions are studied. The results show that the use of FGP core can offer a PSP with half weight core and only 5% reduction in critical buckling loads. Moreover, stacking sequences with only ${\pm}45$ orientation fibers offer the highest values of buckling loads.
Keywords
sandwich plates; functionally graded porous core; laminated composites; buckling behaviors; FEM;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Zarei, A. and Khosravifard, A. (2019), "A meshfree method for static and buckling analysis of shear deformable composite laminates considering continuity of interlaminar transverse shearing stresses", Compos. Struct., 209, 206-218. https://doi.org/10.1016/j.compstruct.2018.10.077   DOI
2 Cetkovic, M. and Vuksanovic, D. (2009), "Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model", Compos. Struct., 88, 219-227. https://doi.org/10.1016/j.compstruct.2008.03.039   DOI
3 Dash, P. and Singh, B.N. (2009), "Nonlinear free vibration of piezoelectric laminated composite plate", Finite Elem. Anal. Des., 45, 686-694. https://doi.org/10.1016/j.finel.2009.05.004   DOI
4 Dehghan, M. and Baradaran, G.H. (2011), "Buckling and free vibration analysis of thick rectangular plates resting on elastic foundation using mixed finite element and differential quadrature method", Appl. Math. Comput., 218, 2772-2784. https://doi.org/10.1016/j.amc.2011.08.020   DOI
5 Fattahi, A.M. and Safaei, B. (2017), "Buckling analysis of CNTreinforced beams with arbitrary boundary conditions", Microsyst. Technol., 23, 5079-5091. https://doi.org/10.1007/s00542-017-3345-5   DOI
6 Feyzi, M.R. and Khorshidvand, A.R. (2017), "Axisymmetric postbuckling behavior of saturated porous circular plates", Thin Wall. Struct., 112, 149-158. https://doi.org/10.1016/j.tws.2016.11.026   DOI
7 Frikha, A., Zghal, S. and Dammak, F. (2018), "Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element", Aerosp. Sci. Technol., 78, 438-451. https://doi.org/10.1016/j.ast.2018.04.048   DOI
8 Pourasghar, A. and Chen, Z. (2019b), "Hyperbolic heat conduction and thermoelastic solution of functionally graded CNT reinforced cylindrical panel subjected to heat pulse", Int. J. Solids Struct., 163, 117-129. https://doi.org/10.1016/j.ijsolstr.2018.12.030   DOI
9 Pourasghar, A. and Chen, Z. (2019c), "Nonlinear vibration and modal analysis of FG nanocomposite sandwich beams reinforced by aggregated CNTs", Polym. Eng. Sci., https://doi.org/10.1002/pen.25119
10 Pourasghar, A. and Kamarian, S. (2015), "Dynamic stability analysis of functionally graded nanocomposite non-uniform column reinforced by carbon nanotube", J. Vib. Control, 21, 2499-2508. https://doi.org/10.1177/1077546313513625   DOI
11 Pourasghar, A., Moradi-Dastjerdi, R., Yas, M.H., Ghorbanpour Arani, A. and Kamarian, S. (2018), "Three-dimensional analysis of carbon nanotube-reinforced cylindrical shells with temperature-dependent properties under thermal environment", Polym. Compos., 39, 1161-1171. https://doi.org/10.1002/pc.24046   DOI
12 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press.
13 Shafiei, N. and Kazemi, M. (2017), "Buckling analysis on the bidimensional functionally graded porous tapered nano-/microscale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019   DOI
14 Shahsavari, D., Karami, B. and Li, L. (2018), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., Int. J., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053
15 Safaei, B., Moradi-Dastjerdi, R., Behdinan, K. and Chu, F. (2019a), "Critical buckling temperature and force in porous sandwich plates with CNT-reinforced nanocomposite layers", Aerosp. Sci. Technol., 91, 175-185. https://doi.org/10.1016/j.ast.2019.05.020   DOI
16 Guessas, H., Zidour, M., Meradjah, M., Tounsi, A. (2018), "The critical buckling load of reinforced nanocomposite porous plates", Struct. Eng. Mech., Int. J., 67(2), 115-123. https://doi.org/10.12989/sem.2018.67.2.115
17 Zghal, S., Frikha, A. and Dammak, F. (2018), "Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels", Compos. Part B Eng., 150, 165-183. https://doi.org/10.1016/j.compositesb.2018.05.037   DOI
18 Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015), "Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach", Compos. Part B Eng., 75, 36-46. https://doi.org/10.1016/j.compositesb.2015.01.033   DOI
19 Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90, 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005   DOI
20 Ghanati, P. and Safaei, B. (2019), "Elastic buckling analysis of polygonal thin sheets under compression", Indian J. Phys., 93, 47-52. https://doi.org/10.1007/s12648-018-1254-9   DOI
21 Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., Int. J., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349
22 Jabbari, M., Joubaneh, E.F., Khorshidvand, A.R. and Eslami, M.R. (2013), "Buckling analysis of porous circular plate with piezoelectric actuator layers under uniform radial compression", Int. J. Mech. Sci., 70, 50-56. https://doi.org/10.1016/j.ijmecsci.2013.01.031   DOI
23 Jabbari, M., Hashemitaheri, M., Mojahedin, A. and Eslami, M.R. (2014), "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials", J. Therm. Stress., 37, 202-220. https://doi.org/10.1080/01495739.2013.839768   DOI
24 Jalali, S.K. and Heshmati, M. (2016), "Buckling analysis of circular sandwich plates with tapered cores and functionally graded carbon nanotubes-reinforced composite face sheets", Thin-Wall. Struct., 100, 14-24. https://doi.org/10.1016/j.tws.2015.12.001   DOI
25 Singh, S., Singh, J. and Shukla, K. (2013), "Buckling of laminated composite plates subjected to mechanical and thermal loads using meshless collocations", J. Mech. Sci. Technol., 27, 327-336. https://doi.org/10.1007/s12206-012-1249-y   DOI
26 Safaei, B., Moradi-Dastjerdi, R., Qin, Z. and Chu, F. (2019b), "Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads", Compos. Part B Eng., 161, 44-54. https://doi.org/10.1016/j.compositesb.2018.10.049   DOI
27 Shokravi, M. (2017), "Buckling of sandwich plates with FG-CNTreinforced layers resting on orthotropic elastic medium using Reddy plate theory", Steel Compos. Struct., Int. J., 23(6), 623-631. https://doi.org/10.12989/scs.2017.23.6.623
28 Shokri-Oojghaz, R., Moradi-Dastjerdi, R., Mohammadi, H. and Behdinan, K. (2019), "Stress distributions in nanocomposite sandwich cylinders reinforced by aggregated carbon nanotube", Polym. Compos., 40, E1918-E1927. https://doi.org/10.1002/pc.25206   DOI
29 Tang, H., Li, L. and Hu, Y. (2018), "Buckling analysis of twodirectionally porous beam", Aerosp. Sci. Technol., 78, 471-479. https://doi.org/10.1016/j.ast.2018.04.045   DOI
30 Timoshenko, S. and Gere, J. (1961), Theory of Elastic Stability, McGraw-Hill, New York, NY, USA.
31 Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., Int. J., 22, 277-299. https://doi.org/10.12989/scs.2016.22.2.277   DOI
32 Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595
33 Malekzadeh, P. and Karami, G. (2008), "A mixed differential quadrature and finite element free vibration and buckling analysis of thick beams on two-parameter elastic foundations", Appl. Math. Model., 32, 1381-1394. https://doi.org/10.1016/j.apm.2007.04.019   DOI
34 Mojahedin, A., Jabbari, M., Khorshidvand, A.R. and Eslami, M.R. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin Wall. Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008   DOI
35 Topal, U. (2012), "Thermal buckling load optimization of laminated plates with different intermediate line supports", Steel Compos. Struct., Int. J., 13(3), 207-223. https://doi.org/10.12989/scs.2012.13.3.207   DOI
36 Tornabene, F. and Reddy, J.N. (2013), "FGM and Laminated Doubly-Curved and Degenerate Shells Resting on Nonlinear Elastic Foundations: A GDQ Solution for Static Analysis with a Posteriori Stress and Strain Recovery", J. Indian Inst. Sci., 93, 635-688.
37 Moradi-Dastjerdi, R. and Malek-Mohammadi, H. (2017a), "Free vibration and buckling analyses of functionally graded nanocomposite plates reinforced by carbon nanotube", Mech. Adv. Compos. Struct., 4, 59-73. https://doi.org/10.22075/MACS.2016.496
38 Moradi-Dastjerdi, R. and Malek-Mohammadi, H. (2017b), "Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory", J. Sandw. Struct. Mater., 19, 736-769. https://doi.org/10.1177/1099636216643425   DOI
39 Moradi-Dastjerdi, R. and Pourasghar, A. (2016), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube under an impact load", J. Vib. Control, 22, 1062-1075. https://doi.org/10.1177/1077546314539368   DOI
40 Tornabene, F., Methods, C., Mech, A. and Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a fourparameter power-law distribution", Comput. Methods Appl. Mech. Eng., 198, 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011   DOI
41 Tornabene, F., Liverani, A. and Caligiana, G. (2011), "FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: A 2-D GDQ solution for free vibrations", Int. J. Mech. Sci., 53, 446-470. https://doi.org/10.1016/j.ijmecsci.2011.03.007   DOI
42 Tornabene, F., Fantuzzi, N., Viola, E. and Batra, R.C. (2015), "Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory", Compos. Struct., 119, 67-89. https://doi.org/10.1016/j.compstruct.2014.08.005   DOI
43 Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B Eng., 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016   DOI
44 Pourasghar, A. and Chen, Z. (2019a), "Effect of hyperbolic heat conduction on the linear and nonlinear vibration of CNT reinforced size-dependent functionally graded microbeams", Int. J. Eng. Sci., 137, 57-72. https://doi.org/10.1016/j.ijengsci.2019.02.002   DOI
45 Afsharmanesh, B., Ghaheri, A. and Taheri-Behrooz, F. (2014), "Buckling and vibration of laminated composite circular plate on Winkler-type foundation", Steel Compos. Struct., Int. J., 17(1), 1-19. https://doi.org/10.12989/scs.2014.17.1.001   DOI
46 Aram, E. and Mehdipour-Ataei, S. (2016), "A review on the micro- and nanoporous polymeric foams: Preparation and properties", Int. J. Polym. Mater. Polym. Biomater., 65, 358-375. https://doi.org/10.1080/00914037.2015.1129948   DOI
47 Nguyen, K., Thai, H.T. and Vo, T. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 91-120. https://doi.org/10.12989/scs.2015.18.1.091   DOI
48 Pandit, M.K., Singh, B.N. and Sheikh, A.H. (2008), "Buckling of laminated sandwich plates with soft core based on an improved higher order zigzag theory", Thin-Wall. Struct., 46, 1183-1191. https://doi.org/10.1016/j.tws.2008.03.002   DOI
49 Pourasghar, A. and Chen, Z. (2016), "Thermoelastic response of CNT reinforced cylindrical panel resting on elastic foundation using theory of elasticity", Compos. Part B Eng., 99, 436-444. https://doi.org/10.1016/j.compositesb.2016.06.028   DOI
50 Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2019), "A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells", Eng. Struct., 178, 444-459. https://doi.org/10.1016/j.engstruct.2018.10.047   DOI
51 Tran, L.V., Thai, C.H. and Nguyen-Xuan, H. (2013), "An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates", Finite Elem. Anal. Des., 73, 65-76. https://doi.org/10.1016/j.finel.2013.05.003   DOI
52 Yu, T., Yin, S., Bui, T.Q., Xia, S., Tanaka, S. and Hirose, S. (2016), "NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method", Thin Wall. Struct., 101, 141-156. https://doi.org/10.1016/j.tws.2015.12.008   DOI
53 Birmana, V. and Kardomateas, G.A. (2018), "Review of current trends in research and applications of sandwich structures", Compos. Part B Eng., 142, 221-240. https://doi.org/10.1016/j.compositesb.2018.01.027   DOI