Browse > Article
http://dx.doi.org/10.12989/scs.2018.29.2.151

Axial compressive behavior of concrete-filled steel tube columns with stiffeners  

Liang, Wei (School of Architecture and Environment, Sichuan University)
Dong, Jiangfeng (School of Architecture and Environment, Sichuan University)
Wang, Qingyuan (Key Laboratory of Deep Underground Science and Engineering, Ministry of Education, Sichuan University)
Publication Information
Steel and Composite Structures / v.29, no.2, 2018 , pp. 151-159 More about this Journal
Abstract
In order to reduce the deformation and delay the local buckling of concrete filled steel tube (CFST) columns, strengthening the structures with stiffeners is an effective method. In this paper, a new stiffening method with inclined stiffeners was used to investigate the behaviors of short CFST columns under axial compression. Besides, a three-dimensional nonlinear finite element (FE) model was applied to simulate the mechanical performances, including the total deformation, local buckling, and stress-strain relationship. Revised constitutive models of stiffened steel tube and confined concrete are proposed. A good agreement was achieved between the test and FE results. Furthermore, the calculated results of load capacity by using a simplified method also show a good correlation with experimental data.
Keywords
concrete filled steel tube (CFST) columns; self-compacting concrete (SCC); stiffening; axial compression; finite element analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abdel-Rahman, N. and Sivakumaran, K.S. (1997), "Material properties models for analysis of cold-formed steel members", J. Struct. Eng, 123(9), 1135-1143.   DOI
2 Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Predicting the axial load capacity of high-strength concrete filled steel tubular columns", Steel Compos. Struct., Int. J., 19(4), 967-993.   DOI
3 Bambach, M.R. (2011), "Design of hollow and concrete filled steel and stainless steel tubular columns for transverse impact loads", Thin Wall. Struct., 49(10), 1251-1260.   DOI
4 Carpinteri, A. (2012), Mechanical Damage and Crack Growth in Concrete: Plastic Collapse to Brittle Fracture, Springer Science & Business Media.
5 Chang, X., Fu, L., Zhao, H.-B. and Zhang, Y.-B. (2013), "Behaviors of axially loaded circular concrete-filled steel tube (CFT) stub columns with notch in steel tubes", Thin Wall. Struct., 73, 273-280.   DOI
6 Chitawadagi, M.V., Narasimhan, M.C. and Kulkarni, S.M. (2010), "Axial strength of circular concrete-filled steel tube columns -DOE approach", J. Constr. Steel Res., 66(10), 1248-1260.   DOI
7 Nepomuceno, M.C.S., Pereira-de-Oliveira, L.A. and Lopes, S.M.R. (2014), "Methodology for the mix design of selfcompacting concrete using different mineral additions in binary blends of powders", Constr. Build. Mater., 64, 82-94.   DOI
8 Okamura, H. and Ouchi, M. (1998), "Self-compacting high performance concrete", Progress in Structural Engineering and Materials, 1(4), 378-383.   DOI
9 Petrus, C., Abdul Hamid, H., Ibrahim, A. and Parke, G. (2010), "Experimental behaviour of concrete filled thin walled steel tubes with tab stiffeners", J. Constr. Steel Res., 66(7), 915-922.   DOI
10 Ren, Q.X., Hou, C., Lam, D. and Han, L.H. (2014), "Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns", Steel Compos. Struct., Int. J., 17(5), 667-686.   DOI
11 Siddique, R. (2013), "Compressive strength, water absorption, sorptivity, abrasion resistance and permeability of selfcompacting concrete containing coal bottom ash", Constr. Build. Mater., 47, 1444-1450.   DOI
12 Su, N., Hsu, K.-C. and Chai, H.-W. (2001), "A simple mix design method for self-compacting concrete", Cem. Concrete Res., 31, 1799-1807.   DOI
13 Tao, Z., Han, L.-H. and Wang, Z.-B. (2005), "Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns", J. Constr. Steel Res., 61(7), 962-983.   DOI
14 Tao, Z., Han, L.-H. and Wang, D.-Y. (2007), "Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns", Thin Wall. Struct., 45(5), 517-527.   DOI
15 Tao, Z., Uy, B., Han, L.-H. and Wang, Z.-B. (2009), "Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression", Thin Wall. Struct., 47(12), 1544-1556.   DOI
16 Elremaily, A. and Azizinamini, A. (2002), "Behavior and strength of circular concrete-filled tube columns", J. Constr. Steel Res., 58, 1567-1591.   DOI
17 Tao, Z., Wang, Z.-B. and Yu, Q. (2013), "Finite element modelling of concrete-filled steel stub columns under axial compression", J. Constr. Steel Res., 89, 121-131.   DOI
18 Dai, X. and Lam, D. (2010), "Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns", J. Constr. Steel Res., 66(7), 931-942.   DOI
19 Domone, P.L. (2006), "Self-compacting concrete: An analysis of 11 years of case studies", Cem. Concrete Compos., 28(2), 197-208.   DOI
20 Dundu, M. (2012), "Compressive strength of circular concrete filled steel tube columns", Thin Wall. Struct., 56, 62-70.   DOI
21 Gettu, R., Bazant, Z.P. and Karr, M.E. (1990), "Fracture properties and brittleness of high-strength concrete", ACI Mater. J., 87(6), 608-618.
22 Han, L.-H., Yao, G.-H. and Tao, Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", Thin Wall. Struct., 45(1), 24-36.   DOI
23 Han, L.-H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228.   DOI
24 Huang, C. S., Yeh, Y.-K., Liu, G.-Y., Hu, H.-T., Tsai, K.C., Weng, Y.T., Wang, S.H. and Wu, M.-H. (2002), "Axial Load Behavior of Stiffened Concrete-Filled Steel Columns", J. Struct. Eng., 128(9), 1222-1230.   DOI
25 Huang, H., Han, L.-H., Tao, Z. and Zhao, X.-L. (2010), "Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns", J. Constr. Steel Res., 66(4), 542-555.   DOI
26 Long, Y.-L. and Cai, J. (2013), "Stress-strain relationship of concrete confined by rectangular steel tubes with binding bars", J. Constr. Steel Res., 88, 1-14.   DOI
27 Topcu, I.B., Bilir, T. and Uygunoglu, T. (2009), "Effect of waste marble dust content as filler on properties of self-compacting concrete", Constr. Build. Mater., 23(5), 1947-1953.   DOI
28 Lam, D., Dai, X.H., Han, L.H., Ren, Q.X. and Li, W. (2012), "Behaviour of inclined, tapered and STS square CFST stub columns subjected to axial load", Thin Wall. Struct., 54, 94-105.   DOI