Browse > Article
http://dx.doi.org/10.12989/scs.2018.26.2.171

Truncated hierarchical B-splines in isogeometric analysis of thin shell structures  

Atri, H.R. (Department of Civil Engineering, Shahid Bahonar University of Kerman)
Shojaee, S. (Department of Civil Engineering, Shahid Bahonar University of Kerman)
Publication Information
Steel and Composite Structures / v.26, no.2, 2018 , pp. 171-182 More about this Journal
Abstract
This paper presents an isogeometric discretization of Kirchhoff-Love thin shells using truncated hierarchical B-splines (THB-splines). It is demonstrated that the underlying basis functions are ideally appropriate for adaptive refinement of the so-called thin shell structures in the framework of isogeometric analysis. The proposed approach provides sufficient flexibility for refining basis functions independent of their order. The main advantage of local THB-spline evaluation is that it provides higher degree analysis on tight meshes of arbitrary geometry which makes it well suited for discretizing the Kirchhoff-Love shell formulation. Numerical results show the versatility and high accuracy of the present method. This study is a part of the efforts by the authors to bridge the gap between CAD and CAE.
Keywords
THB-splines; isogeometric analysis; Kirchhoff-Love shell; CAD; CAE;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Wawrzinek, A., Hildebrandt, K. and Polthier, K. (2011), "Koiter's Thin Shells on Catmull-Clark Limit Surfaces", In: VMV, pp . 113-120.
2 Hughes, T.J., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Methods Appl. Mech. Eng., 194(39), 4135-4195.   DOI
3 Ivannikov, V., Tiago, C. and Pimenta, P. (2014), "On the boundary conditions of the geometrically nonlinear Kirchhoff-Love shell theory", Int. J. Solids Struct., 51(18), 3101-3112.   DOI
4 Johannessen, K.A., Kvamsdal, T. and Dokken, T. (2014), "Isogeometric analysis using LR B-splines", Comput. Methods Appl. Mech. Eng., 269, 471-514.   DOI
5 Johannessen, K.A., Remonato, F. and Kvamsdal, T. (2015), "On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines", Comput. Methods Appl. Mech. Eng., 291, 64-101.   DOI
6 Kang, P. and Youn, S.-K. (2016), "Isogeometric topology optimization of shell structures using trimmed NURBS surfaces", Finite Elements in Analysis and Design, 120, 18-40.   DOI
7 Khakalo, S. and Niiranen, J. (2017), "Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial finite element software", Comput.-Aid. Des., 82, 154-169.   DOI
8 Kiss, G., Giannelli, C., Zore, U., Juttler, B., Grossmann, D. and Barner, J. (2014), "Adaptive CAD model (re-) construction with THB-splines", Graph. Models, 76, 273-288.   DOI
9 Kraft, R. (1997), Adaptive and linearly independent multilevel Bsplines: SFB 404, Geschaftsstelle.
10 Lee, S.-W., Yoon, M. and Cho, S. (2017), "Isogeometric topological shape optimization using dual evolution with boundary integral equation and level sets", Comput.-Aid. Des., 82, 88-99.   DOI
11 Gonzalez, D., Cueto, E. and Doblare, M. (2008), "Higher-order natural element methods: Towards an isogeometric meshless method", Int. J. Numer. Method. Eng., 74(13), 1928-1954.   DOI
12 Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T., Lipton, S., Scott, M.A. and Sederberg, T.W. (2010), "Isogeometric analysis using T-splines", Comput. Methods Appl. Mech. Eng., 199(5), 229-263.   DOI
13 Wei, X., Zhang, Y., Hughes, T.J. and Scott, M.A. (2015), "Truncated hierarchical Catmull-Clark subdivision with local refinement", Comput. Methods Appl. Mech. Eng., 291, 1-20.   DOI
14 Willberg, C. (2016), "Analysis of the dynamical behavior of piezoceramic actuators using piezoelectric isogeometric finite elements", Adv. Computat. Des., Int. J., 1(1), 37-60.
15 Zore, U. and Juttler, B. (2014), "Adaptively refined multilevel spline spaces from generating systems", Comput. Aid. Geomet. Des., 31, 545-566.   DOI
16 Atluri, S.N. and Zhu, T. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics", Computat. Mech., 22(2), 117-127.   DOI
17 Bartezzaghi, A., Dede, L. and Quarteroni, A. (2015), "Isogeometric analysis of high order partial differential equations on surfaces", Comput. Methods Appl. Mech. Eng., 295, 446-469.   DOI
18 Beirao da Veiga, L., Buffa, A., Sangalli, G. and Vazquez, R. (2013), "Analysis-suitable T-splines of arbitrary degree: definition, linear independence and approximation properties", Math. Models Methods Appl. Sci., 23(11), 1979-2003.   DOI
19 Belytschko, T., Stolarski, H., Liu, W.K., Carpenter, N. and Ong, J.S. (1985), "Stress projection for membrane and shear locking in shell finite elements", Comput. Methods Appl. Mech. Eng., 51, 221-258.   DOI
20 Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Methods Eng., 37(2), 229-256.   DOI
21 Bornemann, P. and Cirak, F. (2013), "A subdivision-based implementation of the hierarchical b-spline finite element method", Comput. Methods Appl. Mech. Eng., 253, 584-598.   DOI
22 Morgenstern, P. and Peterseim, D. (2015), "Analysis-suitable adaptive T-mesh refinement with linear complexity", Comput. Aid. Geomet. Des., 34, 50-66.   DOI
23 Li, X., Deng, J. and Chen, F. (2007), "Surface modeling with polynomial splines over hierarchical T-meshes", The Visual Computer, 23(12), 1027-1033.   DOI
24 Li, X., Zheng, J., Sederberg, T.W., Hughes, T.J. and Scott, M.A. (2012), "On linear independence of T-spline blending functions", Comput. Aid. Geomet. Des., 29(1), 63-76.   DOI
25 Liu, G.-R. and Gu, Y. (2001), "A point interpolation method for two-dimensional solids", Int. J. Numer. Methods Eng., 50(4), 937-951.   DOI
26 Liu, W.K., Jun, S. and Zhang, Y.F. (1995), "Reproducing kernel particle methods", Int. J. Numer. Methods Fluids, 20(8-9), 1081-1106.   DOI
27 Liu, H., Zhu, X. and Yang, D. (2016), "Isogeometric method based in-plane and out-of-plane free vibration analysis for Timoshenko curved beams", Struct. Eng. Mech., Int. J., 59(3), 503-526.   DOI
28 Nguyen-Thanh, N., Kiendl, J., Nguyen-Xuan, H., Wuchner, R., Bletzinger, K., Bazilevs, Y. and Rabczuk, T. (2011a), "Rotation free isogeometric thin shell analysis using PHT-splines", Comput. Methods Appl. Mech. Eng., 200, 3410-3424.   DOI
29 Nguyen-Thanh, N., Nguyen-Xuan, H., Bordas, S.P.A. and Rabczuk, T. (2011b), "Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids", Comput. Methods Appl. Mech. Eng., 200, 1892-1908.   DOI
30 Riffnaller-Schiefer, A., Augsdorfer, U. and Fellner, D. (2016), "Isogeometric shell analysis with NURBS compatible subdivision surfaces", Appl. Math. Computat., 272, 139-147.   DOI
31 Rosolen, A. and Arroyo, M. (2013), "Blending isogeometric analysis and local maximum entropy meshfree approximants", Comput. Methods Appl. Mech. Eng., 264, 95-107.   DOI
32 Bui, T.Q., Nguyen, M.N. and Zhang, C. (2011), "An efficient meshfree method for vibration analysis of laminated composite plates", Computat. Mech., 48(2), 175-193.   DOI
33 Bressan, A. (2013), "Some properties of LR-splines", Comput. Aid. Geomet. Des., 30. 778-794.   DOI
34 Bressan, A. and Juttler, B. (2015), "A hierarchical construction of LR meshes in 2D", Comput. Aid. Geomet. Des., 37, 9-24.   DOI
35 Buffa, A., Cho, D. and Sangalli, G. (2010), "Linear independence of the T-spline blending functions associated with some particular T-meshes", Comput. Methods Appl. Mech. Eng., 199(23), 1437-1445.   DOI
36 Burkhart, D., Hamann, B. and Umlauf, G. (2010), "Iso-geometric Finite Element Analysis Based on Catmull-Clark: ubdivision Solids", In: Computer Graphics Forum, Wiley Online Library, pp. 1575-1584.
37 Casquero, H., Liu, L., Zhang, Y., Reali, A., Kiendl, J. and Gomez, H. (2017), "Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff-Love shells", Comput.-Aid. Des., 82, 140-153.   DOI
38 Catmull, E. and Clark, J. (1978), "Recursively generated B-spline surfaces on arbitrary topological meshes", Comput.-Aid. Des., 10, 350-355.   DOI
39 Chen, Y., Lee, J. and Eskandarian, A. (2006), Meshless Methods in Solid Mechanics, Springer Science & Business Media.
40 Cirak, F., Ortiz, M. and Schroder, P. (2000), "Subdivision surfaces: a new paradigm for thin-shell finite-element analysis", Int. J. Numer. Methods Eng., 47, 2039-2072.   DOI
41 Sederberg, T.W., Cardon, D.L., Finnigan, G.T., North, N.S., Zheng, J. and Lyche, T. (2004), "T-spline simplification and local refinement", In: Acm Transactions on Graphics (tog), ACM, pp. 276-283.
42 Cirak, F., Scott, M.J., Antonsson, E.K., Ortiz, M. and Schroder, P. (2002), "Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision", Comput.-Aid. Des., 34, 137-148.   DOI
43 Scott, M., Li, X., Sederberg, T. and Hughes, T. (2012), "Local refinement of analysis-suitable T-splines", Comput. Methods Appl. Mech. Eng., 213, 206-222.
44 Sambridge, M., Braun, J. and McQueen, H. (1995), "Geophysical parametrization and interpolation of irregular data using natural neighbours", Geophys. J. Int., 122(3), 837-857.   DOI
45 Schillinger, D., Dede, L., Scott, M.A., Evans, J.A., Borden, M.J., Rank, E. and Hughes, T.J. (2012), "An isogeometric designthrough-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and Tspline CAD surfaces", Comput. Methods Appl. Mech. Eng., 249, 116-150.
46 Sederberg, T.W., Zheng, J., Bakenov, A. and Nasri, A. (2003), "Tsplines and T-NURCCs", In: ACM Transactions on Graphics (TOG), ACM, pp. 477-484.
47 Seo, Y.-D., Kim, H.-J. and Youn, S.-K. (2010), "Shape optimization and its extension to topological design based on isogeometric analysis", Int. J. Solids Struct., 47(11), 1618-1640.   DOI
48 Shojaee, S., Ghelichi, M. and Izadpanah, E. (2013), "Combination of isogeometric analysis and extended finite element in linear crack analysis", Struct. Eng. Mech., Int. J., 48(1), 125-150.   DOI
49 Somireddy, M. and Rajagopal, A. (2014), "Meshless natural neighbor Galerkin method for the bending and vibration analysis of composite plates", Compos. Struct., 111, 138-146.   DOI
50 Tagliabue, A., Dede, L. and Quarteroni, A. (2014), "Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics", Comput. Fluids, 102, 277-303.   DOI
51 Dokken, T., Lyche, T. and Pettersen, K.F. (2013), "Polynomial splines over locally refined box-partitions", Comput. Aid. Geomet. Des., 30(3), 331-356.   DOI
52 da Veiga, L.B., Buffa, A., Cho, D. and Sangalli, G. (2012), "Analysis-suitable T-splines are dual-compatible", Comput. Methods Appl. Mech. Eng., 249, 42-51.
53 Dede, L. and Quarteroni, A. (2015), "Isogeometric Analysis for second order partial differential equations on surfaces", Comput. Methods Appl. Mech. Eng., 284, 807-834.   DOI
54 Deng, J., Chen, F., Li, X., Hu, C., Tong, W., Yang, Z. and Feng, Y. (2008), "Polynomial splines over hierarchical T-meshes", Graph. Models, 70, 76-86.   DOI
55 Dorfel, M.R., Juttler, B. and Simeon, B. (2010), "Adaptive isogeometric analysis by local h-refinement with T-splines", Comput. Methods Appl. Mech. Eng., 199(5), 264-275.   DOI
56 Evans, E., Scott, M., Li, X. and Thomas, D. (2015), "Hierarchical T-splines: Analysis-suitability, Bezier extraction, and application as an adaptive basis for isogeometric analysis", Comput. Methods Appl. Mech. Eng., 284, 1-20.   DOI
57 Flugge, S. and Truesdell, C. (1972), Handbuch der Physik: Encyclopedia of physics. vol. VIa/2, Mechanics of solids II. Festkorpermechanik II. Bd. VIa/2: Springer-Verlag.
58 Giannelli, C., Juttler, B., Kleiss, S.K., Mantzaflaris, A., Simeon, B. and Speh, J. (2016), "THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis", Comput. Methods Appl. Mech. Eng., 299, 337-365.   DOI
59 Forsey, D.R. and Bartels, R.H. (1988), "Hierarchical B-spline refinement", ACM Siggraph Computer Graphics, 22(4), 205-212.   DOI
60 Giannelli, C., JuTtler, B. and Speleers, H. (2012), "THB-splines: The truncated basis for hierarchical splines", Comput. Aid. Geomet. Des., 29, 485-498.   DOI
61 Valizadeh, N., Bazilevs, Y., Chen, J. and Rabczuk, T. (2015), "A coupled IGA-Meshfree discretization of arbitrary order of accuracy and without global geometry parameterization", Comput. Methods Appl. Mech. Eng., 293, 20-37.   DOI
62 Taheri, A.H., Hassani, B. and Moghaddam, N. (2014), "Thermoelastic optimization of material distribution of functionally graded structures by an isogeometrical approach", Int. J. Solids Struct., 51(2), 416-429.   DOI
63 Uhm, T.K. and Youn, S.K. (2009), "T-spline finite element method for the analysis of shell structures", Int. J. Numer. Method. Eng., 80(4), 507-536.   DOI
64 unther Greiner, G. and Hormann, K. (1996), "Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines", In: Proceedings of Chamonix, pp. 1.
65 Vuong, A.-V., Giannelli, C., Juttler, B. and Simeon, B. (2011), "A hierarchical approach to adaptive local refinement in isogeometric analysis", Comput. Methods Appl. Mech. Eng., 200, 3554-3567.   DOI
66 Wang, P., Xu, J., Deng, J. and Chen, F. (2011), "Adaptive isogeometric analysis using rational PHT-splines", Comput.-Aid. Des., 43, 1438-1448.   DOI