Browse > Article
http://dx.doi.org/10.12989/scs.2015.18.2.519

Statistical-based evaluation of design codes for circular concrete-filled steel tube columns  

Li, Na (School of Civil Engineering, Wuhan University)
Lu, Yi-Yan (School of Civil Engineering, Wuhan University)
Li, Shan (School of Civil Engineering, Wuhan University)
Liang, Hong-Jun (School of Civil Engineering, Wuhan University)
Publication Information
Steel and Composite Structures / v.18, no.2, 2015 , pp. 519-546 More about this Journal
Abstract
This study addresses the load capacity prediction of circular concrete-filled steel tube (CFST) columns under axial compression using current design codes. Design methods given in the Chinese code CECS 28:2012 (2012), American code AISC 360-10 (2010) and EC4 (2004) are presented and described briefly. A wide range of experimental data of 353 CFST columns is used to evaluate the applicability of CECS 28:2012 in calculating the strength of circular CFST columns. AISC 360-10 and EC4 (2004) are also compared with the test results. The comparisons indicate that all three codes give conservative predictions for both short and long CFST columns. The effects of concrete strength, steel strength and diameter-to-thickness ratio on the accuracy of prediction according to CECS 28:2012 are discussed, which indicate a possibility of extending the limitations on the material strengths and diameter-to-thickness ratio to higher values. A revised equation for slenderness reduction factor in CECS 28:2012 is given.
Keywords
concrete-filled steel tube columns; axial compression; load capacity; CECS 28:2012;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhang, S.M. and Wang, Y.Y. (2004), "Failure modes of short columns of high-strength concrete-filled steel tubes", China Civ. Eng. J., 37(9), 1-10.
2 Zhang, Y.C., Wang, Q.P., Mao, X.Y. and Cao, B.Z. (2005), "Research on Mechanics Behavior of Stub-column of Concrete-filled Thin-walled Steel Tube under Axial Load", Build. Struct., 35(1), 22-27.
3 Abed, F., Al-Hamaydeh, M. and Abdalla, S. (2013), "Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)", J. Constr. Steel Res., 80, 429-439.   DOI
4 An, Y.F., Han, L.H. and Zhao, X.L. (2012), "Behaviour and design calculations on very slender thin-walled CFST columns", Thin-Wall. Struct., 53, 161-175.   DOI
5 Abdalla, S., Abed, F. and Al-Hamaydeh, M. (2013), "Behavior of CFSTs and CCFSTs under quasi-static axial compression", J. Constr. Steel Res., 90, 235-244.   DOI
6 American Institute of Steel Construction (2005), ANSI/AISC 360-05, Specification for Structural Steel Buildings, Chicago, IL, USA.
7 American Institute of Steel Construction (2010), ANSI/AISC 360-10, Specification for Structural Steel Buildings, Chicago, IL, USA.
8 Australia Standard (2001), AS3600, Reinforced concrete structures, Sydney, Autralia.
9 Australia Standard (2004), AS5100, Bridge design Part 6: Steel and composite construction, Sydney, Australia.
10 Australia Standards (1998), AS4100, Steel structures, Sydney, Australia.
11 Beck, A.T., Oliveira, W.L.A. and De Nardin, S. (2009), "Reliability-based evaluation of design code provisions for circular concrete-filled steel columns", Eng. Struct., 31(10), 2299-2308.   DOI
12 Bradford, A., Loh, H.Y. and Uy, B. (2002), "Slenderness limits for filled circular steel tubes", J. Constr. Steel Res., 58 (2), 243-252.   DOI
13 Cai, S.H. (2007), Modern Steel Tube Confined Concrete Structures, China Communications Press, Beijing, China.
14 Chen, Z.Y., Zhu, J.Q. and Wu, P.G. (1992), High Strength Concrete and its Application, Tsinghua University Press, Beijing, China.
15 Ellobody, E., Young, B. and Lam, D. (2006), "Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns", J. Constr. Steel Res., 62(7), 706-715.   DOI
16 China Engineering Construction Standard (1990), CECS 28:90, Technical specification for concrete-filled steel tubular structures, Beijing, China.
17 Chitawadagi, M.V., Narasimhan, M.C. and Kulkarni, S.M. (2010), "Axial strength of circular concrete-filled steel tube columns - DOE approach", J. Constr. Steel Res., 66(10), 1248-1260.   DOI
18 Dundu, M. (2012), "Compressive strength of circular concrete filled steel tube columns", Thin-Wall. Struct., 56, 62-70.   DOI
19 European Committee for Standardization (2003), EN 1993-1-1:2003, Design of steel structures, Part 1-1: General rules and rules for buildings, London, UK.
20 European Committee for Standardization (2004), EN 1994-1-1:2004, Design of composite steel and concrete structures, Part 1-1: General rules and rules for buildings, London, UK.
21 Fujimoto, T., Mukai, A. and Nishiyama, I. (2004), "Behavior of eccentrically loaded concrete-filled steel tubular columns", J. Struct. Eng., 130(2), 203-212.   DOI
22 Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068.   DOI
23 Gupta, P.K., Sarda, S.M. and Kumar, M.S. (2007), "Experimental and computational study of concrete filled steel tubular columns under axial loads", J. Constr. Steel Res., 63(2), 182-193.   DOI
24 Han, L.H. and Yao, G.H. (2004), "Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC)", Thin-Wall. Struct., 42(9), 1357-1377.   DOI
25 Hajjar, J.F. and Gourley, B.C. (1996), "Representation of concrete-filled steel tube cross-section strength", J. Struct. Eng., 122(11), 1327-1336.   DOI
26 Han, L.H. (2000a), "The influence of concrete compaction on the strength of concrete filled steel tubes", Adv. Struct. Eng., 3(2), 131-137.   DOI
27 Han, L.H. (2000b), "Tests on concrete filled steel tubular columns with high slenderness ratio", Adv. Struct. Eng., 3(4), 337-344.   DOI
28 Han, L.H., Yao, G.H. and Zhao, X.L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Constr. Steel Res., 61(9), 1241-1269.   DOI   ScienceOn
29 Hu, H.T., Huang, C.S. and Chen, Z.L. (2005), "Finite element analysis of CFST columns subjected to an axial compressive force and bending moment in combination", J. Constr. Steel Res., 61(12), 1692-1712.   DOI
30 Kato, B. (1996), "Column curves of steel-concrete composite members", J. Constr. Steel Res., 39(2), 121-135.   DOI
31 Lee, S.H., Uy, B. and Kim, S.H. (2011), "Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading", J. Constr. Steel Res., 67(1), 1-13.   DOI
32 Liang, Q.Q. and Fragomeni, S. (2009), "Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading", J. Constr. Steel Res., 65(12), 2186-2196.   DOI   ScienceOn
33 O'Shea, M.D. and Bridge, R.Q. (2000), "Design of circular thin-walled concrete filled steel tubes", J. Struct. Eng., 126(11), 1295-1303.   DOI
34 National Standard of the People's Republic of China (2010), GB 50010-2010, Code for design of concrete structures, Beijing, China.
35 Oliveira, W.L.A., Nardin, S.D., Debs, A.L.H.C. and Debs, M.K.E. (2009), "Influence of concrete strength and length/diameter on the axial capacity of CFST columns", J. Constr. Steel Res., 65(12), 2103-2110.   DOI
36 Oliveira, W.L.A., Nardin, S.D., Debs, A.L.H.C. and Debs, M.K.E. (2010), "Evaluation of passive confinement in CFST columns", J. Constr. Steel Res., 2010, 66(4), 487-495.   DOI
37 Portoles, J.M., Romero, M.L. and Bonet, J.L. (2011a), "Experimental study of high strength concrete-filled circular tubular columns under eccentric loading", J. Constr. Steel Res., 67(4), 623-633.   DOI
38 Portoles, J.M., Romero, M.L. and Filippou, F.C. (2011b), "Simulation and design recommendations of eccentrically loaded slender concrete-filled tubular columns", Eng. Struct., 33(5), 1576-1593.   DOI
39 Probst, A.D., Kang, T.H.K. and Ramseyer, C. (2010), "Composite flexural behavior of full-scale concrete-filled tubes without axial loads", J. Struct. Eng., 136(11), 1401-1412.   DOI
40 Pu, X.C. (2004), Super High Strength High Performance Concrete, Chongqing University Press, Chongqing, China.
41 Roeder, C.W., Cameron, B. and Brown, C.B. (1999), "Composite action in concrete filled tubes", J. Struct. Eng., 125(5), 477-484.   DOI
42 Susantha, K.A.S., Ge, H.B. and Usami, T. (2001), "A capacity prediction procedure for concrete filled steel columns", J. Earthq. Eng., 5(4), 483-520.   DOI
43 Sakino, K., Nakahara, H. and Morino, S. (2004), "Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns", J. Struct. Eng., 130(2), 180-188.   DOI
44 Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138.   DOI
45 Shanmugam, N.E. and Lakshmi, B. (2001), "State of the art report on steel-concrete composite columns", J. Constr. Steel Res., 57(10), 1041-1080.   DOI
46 Tan, K.F. and Pu, X.C. (2000), "Study on behavior and load bearing capacities of slender steel tubular columns and eccentrically loaded steel tubular columns filled with extra-high strength concrete", J. Build. Struct., 21(2), 12-19.
47 Tan, K.F., Pu, X.C. and Cai, S.H. (1999), "Study on the mechanical properties of steel extra-high strength concrete encased in steel tubes", J. Build. Struct., 20(1), 10-15.
48 Uy. B., Tao, Z. and Han, L.H. (2011), "Behaviour of short and slender concrete-filled stainless steel tubular columns", J. Constr. Steel Res., 67(3), 360-378.   DOI   ScienceOn
49 Yu, Z.W., Ding, F.X. and Cai, C.S. (2007), "Experimental behavior of circular concrete-filled steel tube stub columns", J. Constr. Steel Res., 63(2), 165-174.   DOI   ScienceOn
50 Yu, Q., Tao, Z. and Wu, Y.X. (2008), "Experimental behaviour of high performance concrete-filled steel tubular columns", Thin-Wall. Struct., 46(4), 362-370.   DOI
51 Zeghiche, J. and Chaoui, K. (2005), "An experimental behaviour of concrete-filled steel tubular columns", J. Constr. Steel Res., 61(1), 53-66.   DOI
52 China Engineering Construction Standard (2012), CECS 28:2012, Technical specification for concrete-filled steel tubular structures, Beijing, China.