Browse > Article
http://dx.doi.org/10.12989/cac.2021.28.1.069

Strength performance with buckling analysis of Intermediate filaments by consideration nonlocal parameters  

Safeer, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir)
Khadimallah, Mohamed A. (Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University)
Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Elaloui, Elimame (Laboratory of Materials Applications in Environment, Water and Energy LR21ES15, Faculty of Sciences, University of Gafsa)
Touns, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Computers and Concrete / v.28, no.1, 2021 , pp. 69-75 More about this Journal
Abstract
Protein structures, that form intermediate filaments (IFs) was first found by an experiment known as the computerized analysis of amino acid sequence of a human epidermal keratin derived from cloned cDNAs. This study is made by the application of Euler beam theory. The buckling of intermediate filaments is studied keeping the nonlocal effects under consideration. It is observed that the nonlocal parameter has a great impact on the dynamics of intermediate filaments. The buckling behavior of intermediate filaments is investigated with different four conditions like as simply supported, clamped, cantilever and propped cantilever beam. Also the effect of critical bucking force is seen for different strengths of nonlocal parameter as 1,2,3,4.
Keywords
actin filaments; buckling of intermediate filaments; critical bucking force; propped cantilever beam; protein structures;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Franke, W.W., Schmid, E., Osborn, M. and Weber, K. (1978), "Different intermediate-sized filaments distinguished by immunofluorescence microscopy", Proc. Nat. Acad. Sci., 75, 5034-5038. https://doi.org/10.1073/pnas.75.10.5034.   DOI
2 Gittes, F., Mickey, B., Nettleton, J. and Howard, J. (1993), "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape", J. Cell Biology, 120, 923-934. https://doi.org/10.1083/jcb.120.4.923.   DOI
3 Goldman, R.D., Cleland, M.M., Murthy, S.P., Mahammad, S. and Kuczmarski, E.R. (2012), "Inroads into the structure and function of intermediate filament networks", J. Struct. Biology, 177, 14-23. https://doi.org/10.1016/j.jsb.2011.11.017.   DOI
4 Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.   DOI
5 Block, J., Schroeder, V., Pawelzyk, P., Willenbacher, N. and Koster, S. (2015), "Physical properties of cytoplasmic intermediate filaments", Biochimica et Biophysica Acta (BBA)-Molecul. Cell Res., 1853, 3053-3064. https://doi.org/10.1016/j.bbamcr.2015.05.009.   DOI
6 Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.   DOI
7 Cuenot, S., Fretigny, C., Demoustier-Champagne, S. and Nysten, B. (2004), "Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy", Phys. Rev. B, 69, 165410. https://doi.org/10.1103/PhysRevB.69.165410.   DOI
8 Crewther, W., Dowling, L., Steinert, P. and Parry, D. (1983), "Structure of intermediate filaments", Int. J. Biolog. Macromol., 5, 267-274. https://doi.org/10.1016/0141-8130(83)90040-5.   DOI
9 AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., 25(1), 111. https://doi.org/10.12989/sss.2020.25.1.111.   DOI
10 Chang, L. and Goldman, R.D. (2004), "Intermediate filaments mediate cytoskeletal crosstalk", Nat. Rev. Molecul. Cell Biology, 5(8), 601-613. https://doi.org/10.1038/nrm1438.   DOI
11 Fletcher, D.A. and Mullins, R.D. (2010), "Cell mechanics and the cytoskeleton", Nat., 463, 485. https://doi.org/10.1038/nature08908.   DOI
12 Gruenbaum, Y. and Foisner, R. (2015), "Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation", Ann. Rev. Biochem., 84, 131-164. https://doi.org/10.1146/annurev-biochem-060614-034115.   DOI
13 Gruenbaum, Y., Margalit, A., Goldman, R.D., Shumaker, D.K. and Wilson, K.L. (2005), "The nuclear lamina comes of age", Nat. Rev. Molecul. Cell Biology, 6, 21. https://doi.org/10.1038/nrm1550.   DOI
14 Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.   DOI
15 Guzman, C., Jeney, S., Kreplak, L., Kasas, S., Kulik, A., Aebi, U. and Forro, L. (2006), "Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy", J. Molecul. Biology, 360, 623-630. https://doi.org/10.1016/j.jmb.2006.05.030.   DOI
16 Hanukoglu, I. and Ezra, L. (2014), "Proteopedia entry: Coiled-coil structure of keratins", Biochem. Molecul. Biology Ed., 42(1), 93-94. https://doi.org/10.1002/bmb.20746.   DOI
17 Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.   DOI
18 Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.   DOI
19 Gyoeva, F. and Gelfand, V. (1992), "Coalignment of vimentin intermediate filaments with microtubules depends on kinesin", Trend. Cell Biology, 2, 9. https://doi.org/10.1038/353445a0.   DOI
20 Loghman, A., Arani, A.G. and Barzoki, A.A.M. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concrete, 19(6), 677-687. https://doi.org/10.12989/cac.2017.19.6.677.   DOI
21 Domagala, W., Lubinski, J., Weber, K. and Osborn, M. (1986), "Intermediate filament typing of tumor cells in fine needle aspirates by means of monoclonal antibodies", Acta Cytologica, 30(3), 214-224.
22 Quinlan, R., Hutchison, C. and Lane, B. (1995), "Intermediate filament proteins", Protein Profile, 2(8), 795.
23 Qin, Z., Kreplak, L. and Buehler, M.J. (2009), "Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments", PloS one, 4, e7294. https://doi.org/10.1371/journal.pone.0007294.   DOI
24 Reddy, J. and Pang, S. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431.   DOI
25 Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnol., 11, 139. https://doi.org/10.108/0957-4484/11/3/301.   DOI
26 Parry, D.A., Marekov, L.N., Steinert, P.M. and Smith, T.A. (2002), "A role for the 1A and L1 rod domain segments in head domain organization and function of intermediate filaments: structural analysis of trichocyte keratin", J. Struct. Biology, 137(1-2), 97-108. https://doi.org/10.1006/jsbi.2002.4437.   DOI
27 Qin, Z., Gautieri, A., Nair, A.K., Inbar, H. and Buehler, M.J. (2012), "Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen-hydroxyapatite interface", Langmuir, 28, 1982-1992. https://doi.org/10.1021/la204052a.   DOI
28 Wagner, O.I., Rammensee, S., Korde, N., Wen, Q., Leterrier, J.F. and Janmey, P.A. (2007), "Softness, strength and self-repair in intermediate filament networks", Exp. Cell Res., 313, 2228-2235. https://doi.org/10.1016/j.yexcr.2007.04.025   DOI
29 Strelkov, S.V., Herrmann, H. and Aebi, U. (2003), "Molecular architecture of intermediate filaments", Bioessay., 25, 243-251. https://doi.org/10.1002/bies.10246.   DOI
30 Timoshenko, S. (1953), History of Strength of Materials, McGraw-Hill Book Company. Inc., New York/Toronto/London.
31 Yoon, M., Moir, R.D., Prahlad, V. and Goldman, R.D. (1998), "Motile properties of vimentin intermediate filament networks in living cells", J. Ccell Biology, 143, 147-157. https://doi.org/10.1083/jcb.143.1.147.   DOI
32 Shoeman, R. L., Huttermann, C., Hartig, R. and Traub, P. (2001), "Amino-terminal polypeptides of vimentin are responsible for the changes in nuclear architecture associated with human immunodeficiency virus type 1 protease activity in tissue culture cells", Molecul. Biology Cell, 12(1), 143-154. https://doi.org/10.1091/mbc.12.1.143.   DOI
33 Taj, M., Safeer, M., Hussain, M., Naeem, M.N., Ahmad, M., Abbas, K., ... & Tounsi, A. (2020), "Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media", Comput. Concrete, 25(3), 205-214. https://doi.org/10.12989/cac.2020.25.3.205.   DOI
34 Ramm, B., Stigler, J., Hinczewski, M., Thirumalai, D., Herrmann, H., Woehlke, G. and Rief, M. (2014), "Sequence-resolved free energy profiles of stress-bearing vimentin intermediate filaments", Proc. Nat. Acad. Sci., 111, 11359-11364. https://doi.org/10.1073/pnas.1403122111.   DOI
35 Sayin, E. and Calayir, Y. (2015), "Comparison of linear and nonlinear earthquake response of masonry walls", Comput. Concrete, 16(1), 17-35. https://doi.org/10.12989/cac.2015.16.1.017.   DOI
36 Soltys, B.J. and Gupta, R.S. (1992), "Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules-a quadruple fluorescence labeling study", Biochem. Cell Biology, 70(10-11), 1174-1186. https://doi.org/10.1139/o92-163.   DOI
37 Mofrad, M.R. and Kamm, R.D. (2006), Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics, Cambridge University Press.
38 Takemura, M., Gomi, H., Colucci-Guyon, E. and Itohara, S. (2002), "Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice", J. Neurosci., 22(16), 6972-6979. https://doi.org/10.1523/JNEUROSCI.22-16-06972.2002.   DOI
39 Karabinos, A., Riemer, D., Erber, A. and Weber, K. (1998), "Homologues of vertebrate type I, II and III intermediate filament (IF) proteins in an invertebrate: the IF multigene family of the cephalochordate Branchiostoma", FEBS Lett., 437(1-2), 15-18. https://doi.org/10.1016/S0014-5793(98)01190-9.   DOI
40 Soltys, B.J. and Gupta, R.S. (1992), "Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules-a quadruple fluorescence labeling study", Biochem. Cell Biology, 70, 1174-1186. https://doi.org/10.1139/o92-163.   DOI
41 Traub, P. (2012), Intermediate Filaments: A Review, Springer Science & Business Media.
42 Truesdell, C. (1960), The Rational Mechanics of Flexible or Elastic Bodies: 1638-1788, Leonhardi Euleri Opera Omnia, Ser. 2.
43 Helfand, B.T., Chang, L. and Goldman, R.D. (2004), "Intermediate filaments are dynamic and motile elements of cellular architecture", J. Cell Sci., 117(2), 133-141. https://doi.org/10.1242/jcs.00936.   DOI
44 Wang, G.F. and Feng, X.Q. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl Phys. Lett., 94, 141913. https://doi.org/10.1063/1.3117505.   DOI
45 Wang, Q., Tolstonog, G.V., Shoeman, R. and Traub, P. (2001), "Sites of nucleic acid binding in Type I-IV intermediate filament subunit proteins", Biochem., 40(34), 10342-10349. https://doi.org/10.1021/bi0108305.   DOI
46 Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.   DOI
47 Hanukoglu, I. and Fuchs, E. (1982), "The cDNA sequence of a human epidermal keratin: divergence of sequence but conservation of structure among intermediate filament proteins", Cell, 31(1), 243-252. https://doi.org/10.1016/0092-8674(82)90424-X.   DOI
48 Hanukoglu, I. and Fuchs, E. (1983), "The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable structural domains among keratins", Cell, 33(3), 915-924. https://doi.org/10.1016/0092-8674(83)90034-X.   DOI
49 Herrmann, H. and Aebi, U. (2004), "Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds", Ann. Rev. Biochem., 73, 749-789. https://doi.org/10.1146/annurev.biochem.73.011303.073823.   DOI
50 Ishikawa, H., Bischoff, R. and Holtzer, H. (1968), "Mitosis and intermediate-sized filaments in developing skeletal muscle", J. Cell Biology, 38(3), 538-555. https://doi.org/10.1083/jcb.38.3.538.   DOI
51 Lee, C.H., Kim, M.S., Chung, B.M., Leahy, D.J. and Coulombe, P.A. (2012), "Structural basis for heteromeric assembly and perinuclear organization of keratin filaments", Nat. Struct. Molecul. Biology, 19(7), 707. https://doi.org/10.1038/nsmb.2330.   DOI
52 Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V. and Aebi, U. (2007), "Intermediate filaments: from cell architecture to nanomechanics", Nat. Rev. Molecul. Cell Biology, 8(7), 562-573. https://doi.org/10.1038/nrm2197.   DOI
53 Lodish, H., Berk, A., Kaiser, C. A., Kaiser, C., Krieger, M., Scott, M. P., ... & Matsudaira, P. (2008), Molecular Cell Biology, Macmillan.
54 Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V. and Aebi, U. (2007), "Intermediate filaments: from cell architecture to nanomechanics", Nat. Rev. Molecul. Cell Biology, 8, 562. https://doi.org/10.1038/nrm2197.   DOI
55 Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.   DOI
56 Li, T. (2008), "A mechanics model of microtubule buckling in living cells", J. Biomech., 41(8), 1722-1729. https://doi.org/10.1016/j.jbiomech.2008.03.003.   DOI
57 Green, K.J., Virata, M.L.A., Elgart, G.W., Stanley, J.R. and Parry, D.A. (1992), "Comparative structural analysis of desmoplakin, bullous pemphigoid antigen and plectin: members of a new gene family involved in organization of intermediate filaments", Int. J. Biolog. Macromol., 14, 145-153. https://doi.org/10.1016/s0141-8130(05)80004-2.   DOI
58 Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells, CRC Press.