Browse > Article
http://dx.doi.org/10.12989/cac.2021.27.6.563

Pull-out strength between Nano-SiO2 contained light-weight self-consolidating concrete and GFRP and steel bars  

Arjomandi, Hamed (Department of Civil Engineering, University of Tabriz)
Asl, Ali Foroghi (Department of Civil Engineering, University of Tabriz)
Publication Information
Computers and Concrete / v.27, no.6, 2021 , pp. 563-574 More about this Journal
Abstract
In this study, the effect of SiO2 nanoparticles on the bonding behavior of steel and glass fiber reinforced polymer (GFRP) bar embedded in contained Light-weight Self-Consolidating Concrete (LWSCC) has been studied experimentally and numerically. The measurement of the mechanical properties of LWSCC modified with SiO2 nanoparticles, including compressive and tensile strength, elastic modulus and density were also carried out. Studies are conducted on 7, and 28-day aged LWSCC samples containing 0, 2 and 5% SiO2 nanoparticles with 12 mm and 16 mm diameter GFRP and steel bars. The results show that LWSCC modified with SiO2 nanoparticles increases the bonding strength between concrete and bar. In LWSCC with 2 and 5 wt.% SiO2, the maximum pull-out force of 16 mm diameter steel bar is increased by 48.5% and 54.7%, respectively, compared to the LWSCC without nanoparticle addition. Also, bonding improvement between GFRP bars with a diameter of 16mm and LWSCC having 2 and 5 wt.% SiO2 is 32.3% and 40%, respectively.
Keywords
light-weight self-consolidating concrete; $SiO_2$ Nanoparticles; pull-out behavior; GFRP bar;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Vahidi Pashaki, P., Pouya, M. and Maleki, V.A. (2018), "Highspeed cryogenic machining of the carbon nanotube reinforced nanocomposites: Finite element analysis and simulation", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(11), 1927-1936. https://doi.org/10.1177/0954406217714012.   DOI
2 Valcuende, M. and Parra, C. (2009), "Bond behaviour of reinforcement in self-compacting concretes", Constr. Build. Mater., 23(1), 162-170. https://doi.org/10.1016/j.conbuildmat.2008.01.007.   DOI
3 Veljkovic, A., Carvelli, V., Haffke, M.M. and Pahn, M. (2017), "Concrete cover effect on the bond of GFRP bar and concrete under static loading", Compos. Part B: Eng., 124, 40-53. https://doi.org/10.1016/j.compositesb.2017.05.054.   DOI
4 Yoo, D.Y., Kang, S.T., Banthia, N. and Yoon, Y.S. (2017), "Nonlinear finite element analysis of ultra-high-performance fiber-reinforced concrete beams", Int. J. Damage Mech., 26(5), 735-757. https://doi.org/10.1177/1056789515612559.   DOI
5 Zhang, J., Ma, G., Huang, Y., Aslani, F. and Nener, B. (2019), "Modelling uniaxial compressive strength of lightweight selfcompacting concrete using random forest regression", Constr. Build. Mater., 210, 713-719. https://doi.org/10.1016/j.conbuildmat.2019.03.189.   DOI
6 Zhang, L., Peng, M., Chang, D. and Xu, Y. (2016), Dam Failure Mechanisms and Risk Assessment, John Wiley & Sons.
7 Wardeh, G., Ghorbel, E., Gomart, H. and Fiorio, B. (2017), "Experimental and analytical study of bond behavior between recycled aggregate concrete and steel bars using a pullout test", Struct. Concrete, 18(5), 811-825. https://doi.org/10.1002/suco.201600155.   DOI
8 Farzaneh, A., Mohammadzadeh, A., Esrafili, M.D. and Mermer, O. (2019), "Experimental and theoretical study of TiO2 based nanostructured semiconducting humidity sensor", Ceram. Int., 45(7), 8362-8369. https://doi.org/10.1016/j.ceramint.2019.01.144.   DOI
9 He, Z. and Xiao, Y. (2020), "Experimental study on axial pull-out behavior of steel rebars glued-in glubam", J. Mater. Civil Eng., 32(3), 34-51. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003080.   DOI
10 Khan, U., Al-Osta, M.A. and Ibrahim, A. (2017), "Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets", Struct. Eng. Mech., 61(1), 125-142. https://doi.org/10.12989/sem.2017.61.1.125.   DOI
11 Ajri, M., Rastgoo, A. and Fakhrabadi Mir Masoud, S. (2019), "Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators", Struct. Eng. Mech., 70(5), 623-637. https://doi.org/10.12989/sem.2019.70.5.623.   DOI
12 Rezaee, M. and Maleki, V.A. (2015), "An analytical solution for vibration analysis of carbon nanotube conveying viscose fluid embedded in visco-elastic medium", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 229(4), 644-650. https://doi.org/10.1177/0954406214538011.   DOI
13 Afify, M.R. and Salem, M.M. (2015), "Bond strength of concrete containing different recycled coarse aggregates", Concrete Res. Lett., 6(2), 93-111.
14 Afroughsabet, V. and Ozbakkaloglu, T. (2015), "Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers", Constr. Build. Mater., 94, 73-82. https://doi.org/10.1016/j.conbuildmat.2015.06.051.   DOI
15 Bhargava, K., Ghosh, A., Mori, Y. and Ramanujam, S. (2007), "Corrosion-induced bond strength degradation in reinforced concrete-Analytical and empirical models", Nucl. Eng. Des., 237(11), 1140-1157. https://doi.org/10.1016/j.nucengdes.2007.01.010.   DOI
16 Bilir, T., Gencel, O. and Topcu, I.B. (2015), "Properties of mortars with fly ash as fine aggregate", Constr. Build. Mater., 93, 782-789. https://doi.org/10.1016/j.conbuildmat.2015.05.095.   DOI
17 Castel, A., Vidal, T., Viriyametanont, K. and Francois, R. (2006), "Effect of reinforcing bar orientation and location on bond with self-consolidating concrete", ACI Struct. J., 103(4), 55-69.
18 MacGregor, J.G., Wight, J.K., Teng, S. and Irawan, P. (1997), Reinforced Concrete: Mechanics and Design, Prentice Hall Upper Saddle River, NJ.
19 Liu, X., Liu, Y., Wu, T. and Wei, H. (2020), "Bond-slip properties between lightweight aggregate concrete and rebar", Constr. Build. Mater., 255, 119-125. https://doi.org/10.1016/j.conbuildmat.2020.119355.   DOI
20 Lotfy, A., Hossain, K.M. and Lachemi, M. (2014), "Application of statistical models in proportioning lightweight self-consolidating concrete with expanded clay aggregates", Constr. Build. Mater., 65, 450-469. https://doi.org/10.1016/j.conbuildmat.2014.05.027.   DOI
21 Michal, M. and Keuser, M. (2018), Bond Tests Under High Loading Rates. High Tech Concrete: Where Technology and Engineering Meet, Springer.
22 Pop, I., De Schutter, G., Desnerck, P. and Onet, T. (2013), "Bond between powder type self-compacting concrete and steel reinforcement", Constr. Build. Mater., 41, 824-833. https://doi.org/10.1016/j.conbuildmat.2012.12.029.   DOI
23 Shafeek, A.M., Khedr, M., El-Dek, S. and Shehata, N. (2020), "Influence of ZnO nanoparticle ratio and size on mechanical properties and whiteness of White Portland Cement", Appl. Nanosci., 10, 3603-3615. https://doi.org/10.1007/s13204-020-01444-5.   DOI
24 Gencel, O., Brostow, W., Datashvili, T. and Thedford, M. (2011), "Workability and mechanical performance of steel fiber-reinforced self-compacting concrete with fly ash", Compos. Interf., 18(2), 169-184. https://doi.org/10.1163/092764411X567567.   DOI
25 Gencel, O., Cengiz, O., Koksal, F., Martinez-Barrera, G., Brostow, W. and Polat, H. (2013), "Fuzzy logic model for prediction of properties of fiber reinforced self-compacting concrete", Mater. Sci., 19(2), 203-215. https://doi.org/10.5755/j01.ms.19.2.4439.   DOI
26 Gencel, O., Ozel, C., Koksal, F., Erdogmus, E., Martinez-Barrera, G. and Brostow, W. (2012), "Properties of concrete paving blocks made with waste marble", J. Clean. Prod., 21(1), 62-70. https://doi.org/10.1016/j.jclepro.2011.08.023.   DOI
27 Liu, R., Xiao, H., Geng, J., Du, J. and Liu, M. (2020), "Effect of nano-CaCO3 and nano-SiO2 on improving the properties of carbon fibre-reinforced concrete and their pore-structure models", Constr. Build. Mater., 244, 23-42. https://doi.org/10.1016/j.conbuildmat.2020.118297.   DOI
28 Joshaghani, A., Balapour, M., Mashhadian, M. and Ozbakkaloglu, T. (2020), "Effects of nano-TiO2, nano-Al2O3, and nano-Fe2O3 on rheology, mechanical and durability properties of self-consolidating concrete (SCC): An experimental study", Constr. Build. Mater., 245, 26-37. https://doi.org/10.1016/j.conbuildmat.2020.118444.   DOI
29 Lepakshi, R. and Reddy, B.V. (2020), "Bond strength of rebars in cement stabilised rammed earth", Constr. Build. Mater., 255, 112-136. https://doi.org/10.1016/j.conbuildmat.2020.119405.   DOI
30 Lu, Y., Liu, Z., Li, S. and Li, N. (2018), "Bond behavior of steel fibers reinforced self-stressing and self-compacting concrete filled steel tube columns", Constr. Build. Mater., 158, 894-909. https://doi.org/10.1016/j.conbuildmat.2017.10.085.   DOI
31 Ozbakkaloglu, T., Fang, C. and Gholampour, A. (2017), "Influence of FRP anchor configuration on the behavior of FRP plates externally bonded on concrete members", Eng. Struct., 133, 133-150. https://doi.org/10.1016/j.engstruct.2016.12.005.   DOI
32 Greco, F., Leonetti, L. and Luciano, R. (2015), "A multiscale model for the numerical simulation of the anchor bolt pull-out test in lightweight aggregate concrete", Constr. Build. Mater., 95, 860-874. https://doi.org/10.1016/j.conbuildmat.2015.07.170.   DOI
33 Solomos, G. and Berra, M. (2010), "Rebar pullout testing under dynamic Hopkinson bar induced impulsive loading", Mater. Struct., 43(1-2), 247-260. https://doi.org/10.1617/s11527-009-9485-z.   DOI
34 Chan, Y.W., Chen, Y.S. and Liu, Y.S. (2003), "Development of bond strength of reinforcement steel in self-consolidating concrete", Struct. J., 100(4), 490-498.
35 CEN (2009), European Committee for Standardization, EN 12390e3, Testing Hardened Concrete-Part 3: Compressive Strength of Test Specimens, Brussels, Belgium: CEN.
36 Ibrahim, A.M., Fahmy, M.F. and Wu, Z. (2016), "3D finite element modeling of bond-controlled behavior of steel and basalt FRP-reinforced concrete square bridge columns under lateral loading", Compos. Struct., 143, 33-52. https://doi.org/10.1016/j.compstruct.2016.01.014.   DOI
37 Tang, C.W. (2017), "Uniaxial bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete", Struct. Eng. Mech., 62, 651-661. https://doi.org/10.12989/sem.2017.62.5.651.   DOI
38 Uygunoglu, T., Brostow, W., Gencel, O. and Topcu, I.B. (2013), "Bond strength of polymer lightweight aggregate concrete", Polym. Ccompos., 34(12), 2125-2132. https://doi.org/10.1002/pc.22621.   DOI
39 Farzaneh, A., Esrafili, M.D. and Mermer O. (2020), "Development of TiO2 nanofibers based semiconducting humidity sensor: adsorption kinetics and DFT computations", Mater. Chem. Phys., 239, 12-29. https://doi.org/10.1016/j.matchemphys.2019.121981.   DOI
40 Gencel, O., del Coz Diaz, J.J., Sutcu, M., Kocyigit, F., Rabanal, F.P.A., Alonso-Martinez, M. and Barrera, G.M. (2021), "Thermal performance optimization of lightweight concrete/EPS layered composite building blocks", Int. J. Thermophys., 42(4), 52-69. https://doi.org/10.1007/s10765-021-02804-1.   DOI
41 Ji, T. (2005), "Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2", Cement Concrete Res., 35(10), 1943-1947. https://doi.org/10.1016/j.cemconres.2005.07.004.   DOI
42 Kazim, T. (2014), "Bond strength of tension lap-splices in full scale self-compacting concrete beams", Turk. J. Eng. Environ. Sci., 32(6), 377-386.
43 Li, H., Xiao, H.G., Yuan, J. and Ou, J. (2004), "Microstructure of cement mortar with nano-particles", Compos. Part B: Eng., 35(2), 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0.   DOI
44 Li, Z., Deng, Z., Yang, H. and Wang, H. (2020), "Bond behavior between recycled aggregate concrete and deformed rebar after Freeze-thaw damage", Constr. Build. Mater., 250, 12-35. https://doi.org/10.1016/j.conbuildmat.2020.118805.   DOI
45 Chupin, O., Piau, J.M., Hammoum, F. and Bouron, S. (2018), "Experimental study and modeling of the behavior of partially saturated asphalt concrete under freezing condition", Constr. Build. Mater., 163, 169-178. https://doi.org/10.1016/j.conbuildmat.2017.12.070.   DOI
46 Dehestani, M., Asadi, A. and Mousavi, S. (2017), "On discrete element method for rebar-concrete interaction", Constr. Build. Mater., 151, 220-227. https://doi.org/10.1016/j.conbuildmat.2017.06.086.   DOI
47 Zhang, X., Ou, J. and Wu, Z. (2017), "Effect of circumferentially monuniform lateral tension on bond behavior between plain round bars and concrete: Analytical study", J. Struct. Eng., 143(12), 34-51. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001903.   DOI
48 Del Coz-Diaz, J.J., Martinez-Martinez, J.E., Alonso-Martinez, M. and Rabanal, F.P.A. (2020), "Comparative study of lightweight and normal concrete composite slabs behaviour under fire conditions", Eng. Struct., 207, 110-126. https://doi.org/10.1016/j.engstruct.2020.110196.   DOI
49 Esmaeili, J., Andalibi, K., Gencel, O., Maleki, F.K. and Maleki, V.A. (2021), "Pull-out and bond-slip performance of steel fibers with various ends shapes embedded in polymer-modified concrete", Constr. Build. Mater., 271, 12-31. https://doi.org/10.1016/j.conbuildmat.2020.121531.   DOI
50 Esmaeili, J. and Andalibi, K. (2013), "Investigation of the effects of nano-silica on the properties of concrete in comparison with micro-silica", Int. J. Nano Dimens., 12(4), 321-328.
51 Ozbolt, J., Orsanic, F. and Balabanic, G. (2014), "Modeling pullout resistance of corroded reinforcement in concrete: Coupled three-dimensional finite element model", Cement Concrete Compos., 46, 41-55. https://doi.org/10.1016/j.cemconcomp.2013.10.014.   DOI
52 Qing, Y., Zenan, Z., Deyu, K. and Rongshen, C. (2007), "Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume", Constr. Build. Mater., 21(3), 539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001.   DOI
53 Singh, L., Karade, S., Bhattacharyya, S., Yousuf, M. and Ahalawat, S. (2013), "Beneficial role of nanosilica in cement based materials-A review", Constr. Build. Mater., 47, 1069-1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052.   DOI
54 Thomas, C., De Brito, J., Cimentada, A. and Sainz-Aja, J. (2020), "Macro-and micro-properties of multi-recycled aggregate concrete", J. Clean. Prod., 245, 45-62. https://doi.org/10.1016/j.jclepro.2019.118843   DOI
55 Cao, Q., Wang, R., Jia, J., Zhou, C. and Lin, Z. (2020), "A comparative study of combined treatments for enhanced earlyage cracking control of self-consolidating concrete", Constr. Build. Mater., 248, 23-41. https://doi.org/10.1016/j.conbuildmat.2020.118473.   DOI
56 Yan, F., Lin, Z., Zhang, D., Gao, Z. and Li, M. (2017), "Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: freeze-thaw cycles and alkaline-saline solution", Compos. Part B: Eng., 116, 406-421. https://doi.org/10.1016/j.compositesb.2016.10.083.   DOI
57 Naaman, A.E., Namur, G.G., Alwan, J.M. and Najm, H.S. (1991), "Fiber pullout and bond slip. I: Analytical study", J. Struct. Eng., 117(9), 2769-2790. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:9(2769).   DOI
58 Trezos, K.G., Sfikas, I.P., Palmos, M.S. and Sotiropoulou, E.K. (2010), Top-Bar Effect in Self-Compacting Concrete Elements. Design, Production and Placement of Self-Consolidating Concrete, Springer.