Browse > Article
http://dx.doi.org/10.12989/cac.2021.27.2.111

Computer modeling to forecast accurate of efficiency parameters of different size of graphene platelet, carbon, and boron nitride nanotubes: A molecular dynamics simulation  

Farazin, Ashkan (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Publication Information
Computers and Concrete / v.27, no.2, 2021 , pp. 111-130 More about this Journal
Abstract
In the present work, an extensive study for predicting efficiency parameters (��i) of various simulated nanocomposites including Polymethyl methacrylate (PMMA) as matrix and different structures including various sizes of graphene platelets (GPLs), single, double, and multi-walled carbon nanotubes (SWCNTs-DWCNTs-MWCNTs), and single and double-walled boron nitride nanotubes (SWBNNTs-DWBNNTs) are investigated. It should be stated that GPLs, carbon and boron nitride nanotubes (CNTs, BNNT) with different chiralities (5, 0), (5, 5), (10, 0), and (10, 10) as reinforcements are considered. In this research, molecular dynamics (MDs) method with Materials studio software is applied to examine the mechanical properties (Young's modulus) of simulated nanocomposite boxes and calculate η1 of each nanocomposite boxes. Then, it is noteworthy that by changing length (6.252, 10.584, and 21.173 nm) and width (7.137, 10.515, and 19.936) of GPLs, ��1, ��2, and ��3 approximately becomes (0.101, 0.114, and 0.124), (1.15, 1.22, and 1.26), (1.04, 1.05, and 1.07) respectively. After that efficiency parameters of SWCNTs, DWCNTs, and MWCNTs are calculated and discussed separately. Finally efficiency parameters of SWBNNTs and DWBNNTs with different chiralities by PMMA as matrix are determined by MD and discussed separately. It is known that the accurate efficiency parameters helps a lot to calculate the properties of nanocomposite analytically. In particular, the obtained results from this research can be used for analytical work based on the extended rule of mixture (ERM) in bending, buckling and vibration analysis of structure in future study.
Keywords
multiscale modeling; efficiency parameter; molecular dynamics; polymethyl methacrylate as matrix; GPL/CNT/BNNT as reinforcement; different chiralities;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Rabczuk, T. (2020), "Free vibration analysis of FG-CNTRC cylindrical pressure vessels resting on pasternak foundation with various boundary conditions", Comput. Mater. Continua, 62(3), 1001-1023.   DOI
2 Rahman, M.M., Zainuddin, S., Hosur, M.V., Malone, J.E., Salam, M.B.A., Kumar, A. and Jeelani, S. (2012), "Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino functionalized MWCNTs", Compos. Struct., 94(8), 2397-2406. https://doi.org/10.1016/j.compstruct.2012.03.014.   DOI
3 Rahmandoust, M. and Ayatollahi, M.R. (2016), "CNT-based nanocomposites", Characterization of Carbon Nanotube Based Composites under Consideration of Defects, 117-175. https://doi.org/10.1007/978-3-319-00251-4_4.   DOI
4 Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376, https://doi.org/10.12989/cac.2019.23.5.361.   DOI
5 Raju, A. and Shanmugaraja, M. (2020), "Recent researches in fiber reinforced composite materials: A review", Mater. Today: Proc. https://doi.org/10.1016/j.matpr.2020.02.141.   DOI
6 Rapaport, D.C. and Rapaport, D.C.R. (2004), The Art of Molecular Dynamics Simulation, Cambridge University Press.
7 Habasaki, J. (2019), "Heterogeneous-homogeneous transition and anomaly of density in SPC/E water examined by molecular dynamics simulations", Physica A: Stat. Mech. Its Appl., 527, 121391. https://doi.org/10.1016/j.physa.2019.121391.   DOI
8 Hadipeykani, M., Aghadavoudi, F. and Toghraie, D. (2020), "A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: A statistical study", Physica A: Stat. Mech. Its Appl., 123995. https://doi.org/10.1016/j.physa.2019.123995.   DOI
9 Hadizadeh Kheirkhah, A., Saeivar Iranizad, E., Raeisi, M. and Rajabpour, A. (2014), "Mechanical properties of hydrogen functionalized graphene under shear deformation: A molecular dynamics study", Solid State Commun., 177, 98-102. https://doi.org/10.1016/j.ssc.2013.10.004.   DOI
10 Haghighi, M., Khodadadi, A., Golestanian, H. and Aghadavoudi, F. (2020), "Effects of defects and functional groups on graphene and nanotube thermoset epoxy-based nanocomposites mechanical properties using molecular dynamics simulation", Polym. Polym. Compos., 0967391120929075. https://doi.org/10.1177/0967391120929075.   DOI
11 Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.   DOI
12 Hanifehlou, S. and Mohammadimehr, M. (2020), "Buckling analysis of sandwich beam reinforced by GPLs using various shear deformation theories", Comput. Concrete, 25(5), 427-432. https://doi.org/10.12989/cac.2020.25.5.427.   DOI
13 Roman, C., Garcia-Morales, M., Olariu, M.A. and McNally, T. (2020), "Effect of selective distribution of MWCNTs on the solid-state rheological and dielectric properties of blends of PMMA and LDPE", J. Mater. Sci., 55(20), 8526-8540. https://doi.org/10.1007/s10853-020-04622-6.   DOI
14 Rostami, R. and Mohammadimehr, M. (2020), "Dynamic stability and bifurcation analysis of sandwich plate with considering FG core and FG-CNTRC face sheets", J. Sandw. Struct. Mater., 109963622090976. https://doi.org/10.1177/1099636220909766.   DOI
15 Hu, Y., Chiang, S.W., Chu, X., Li, J., Gan, L., He, Y., Li, B., Kang, F. and Du, H. (2020), "Vertically aligned carbon nanotubes grown on reduced graphene oxide as high-performance thermal interface materials", J. Mater. Sci., 1-11. https://doi.org/10.1007/s10853-020-04681-9.   DOI
16 Hu, Z., Tong, G., Lin, D., Chen, C., Guo, H., Xu, J. and Zhou, L. (2016), "Graphene-reinforced metal matrix nanocomposites - A review", Mater. Sci. Technol. (UK), 32(9), 930-953. https://doi.org/10.1080/02670836.2015.1104018.   DOI
17 Sahdane, T., Masrour, R. and Jabar, A. (2020), "Magnetic compensation phenomena and paramagnetic behavior on coronene-Like Superlattice: A Monte Carlo study", Solid State Commun., 114138. https://doi.org/10.1016/j.ssc.2020.114138.   DOI
18 Sadeghi, K. and Nouban, F. (2019), "An algorithm for simulation of cyclic eccentrically-loaded RC columns using fixed rectangular finite elements discretization", Comput. Concrete, 23(1), 25-36. https://doi.org/10.12989/cac.2019.23.1.025.   DOI
19 Meng, F. (2019), "Carbon emissions efficiency and abatement cost under inter-region differentiated mitigation strategies: A modified DDF model", Physica A: Stat. Mech. Its Appl., 532, 121888. https://doi.org/10.1016/j.physa.2019.121888.   DOI
20 Meo, M. and Rossi, M. (2006), "Prediction of Young's modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling", Compos. Sci. Technol., 66(11-12), 1597-1605. https://doi.org/10.1016/j.compscitech.2005.11.015.   DOI
21 Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020), "Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection", Comput. Concrete, 25(4), 283-291. https://doi.org/10.12989/cac.2020.25.4.283.   DOI
22 Mohammadimehr, M., Navi, B.R. and Ghorbanpour Arani, A. (2017), "Dynamic stability of modified strain gradient theory sinusoidal viscoelastic piezoelectric polymeric functionally graded single-walled carbon nanotubes reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermo-electro-magneto-mechanical loadings", Mech. Adv. Mater. Struct., 24(16), 1325-1342. https://doi.org/10.1080/15376494.2016.1227507.   DOI
23 Mohammadimehr, M., Mohammadimehr, M.A. and Dashti, P. (2016a), "Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic micro-plate based on surface stress and modified couple stress theories using differential quadrature method", Appl. Math. Mech., 37(4), 529-554. https://doi.org/10.1007/s10483-016-2045-9.   DOI
24 Mohammadimehr, M., Farahi, M.J. and Alimirzaei, S. (2016b), "Vibration and wave propagation analysis of twisted micro-beam using strain gradient theory", Appl. Math. Mech. (English Edition), 37(10), 1375-1392. https://doi.org/10.1007/s10483-016-2138-9.   DOI
25 Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Alavi, S.M.A., Alambeigi, K., Bamdad M.,, Yazdani, R. and Hanifehlou, S. (2018), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., 29(3), 405-422. https://doi.org/10.12989/scs.2018.29.3.405.   DOI
26 Moradi-Dastjerdi, R. and Aghadavoudi, F. (2018), "Static analysis of functionally graded nanocomposite sandwich plates reinforced by defected CNT", Compos. Struct., 200, 839-848. https://doi.org/10.1016/j.compstruct.2018.05.122.   DOI
27 Huckaby, D.A., Shinmi, M. and Belfi, V.A. (1989), "Exact two-phase coexistence surface for a three-component solution on a Bethe lattice", Physica A: Stat. Mech. Its Appl., 154(3), 521-528. https://doi.org/10.1016/0378-4371(89)90262-8.   DOI
28 Ishigami, M., Sau, J.D., Aloni, S., Cohen, M.L. and Zettl, A. (2005), "Observation of the giant Stark effect in boron-nitride nanotubes", Phys. Rev. Lett., 94(5), 1-4. https://doi.org/10.1103/PhysRevLett.94.056804.   DOI
29 Ishiyama, C. and Higo, Y. (2002), "Effects of humidity on young's modulus in poly (methyl methacrylate)", 460-465. https://doi.org/10.1002/polb.10107.   DOI
30 Navi, B.R., Mohammadimehr, M. and Arani, A.G. (2019), "Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory", Steel Compos. Struct., 32(6), 753-767. https://doi.org/10.12989/scs.2019.32.6.753.   DOI
31 Pakdel, A., Zhi, C., Bando, Y. and Golberg, D. (2012), "Low-dimensional boron nitride nanomaterials", Mater. Today, 15(6), 256-265. https://doi.org/10.1016/S1369-7021(12)70116-5.   DOI
32 Pastorin, G. (2009), "Crucial functionalizations of carbon nanotubes for improved drug delivery: A valuable option?", Pharmaceut. Res., 26(4), 746-769. https://doi.org/10.1007/s11095-008-9811-0.   DOI
33 Ito, A., Ayerdurai, V., Miyagawa, A., Matsumoto, A., Okada, H., Courtoux, A. and Yamaguchi, M. (2018), "Effects of residual solvent on glass transition temperature of poly(methyl methacrylate)", Nihon Reoroji Gakkaishi, 46(3), 117-121. https://doi.org/10.1678/rheology.46.117.   DOI
34 Jabar, A. and Masrour, R. (2020a), "Magnetic properties of armchair graphene nanoribbons: A Monte Carlo study", Chin. J. Phys., 64, 1-8. https://doi.org/10.1016/j.cjph.2019.11.030.   DOI
35 Jabar, A. and Masrour, R. (2020b), "Magnetic properties on a decorated triangular lattice: A Monte Carlo simulation", Physica A: Stat. Mech. Its Appl., 538, 122959. https://doi.org/10.1016/j.physa.2019.122959.   DOI
36 Jabar, A. and Masrour, R. (2019), "Magnetic properties of Kekulene structure: A Monte Carlo study", Physica A: Stat. Mech. Its Appl., 514, 974-981. https://doi.org/10.1016/j.physa.2018.09.125.   DOI
37 Jabar, A. and Masrour, R. (2016), "Magnetic properties of graphene structure: a Monte Carlo simulation", J. Superconduct. Novel Magnet., 29(5), 1363-1369. https://doi.org/10.1007/s10948-016-3417-2.   DOI
38 Suryavanshi, A.P., Yu, M.F., Wen, J., Tang, C. and Bando, Y. (2004), "Elastic modulus and resonance behavior of boron nitride nanotubes", Appl. Phys. Let., 84(14), 2527-2529. https://doi.org/10.1063/1.1691189.   DOI
39 Jabar, A. and Masrour, R. (2017), "Magnetic properties of a graphene with alternate layers", Superlat. Microstruct., 112, 541-553. https://doi.org/10.1016/j.spmi.2017.10.013.   DOI
40 Jackman, H. (2012), "Mechanical properties of carbon nanotubes and nanofibers", Carbon Nanotubes and Graphene, Second Edition, Elsevier Ltd.
41 Li, X., Zhi, C., Hanagata, N., Yamaguchi, M., Bando, Y. and Golberg, D. (2013), "Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs", Chem. Commun., 49(66), 7337-7339. https://doi.org/10.1039/c3cc42743a.   DOI
42 Liew, K.M., He, X.Q. and Wong, C.H. (2004), "On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation", Acta Materialia, 52(9), 2521-2527. https://doi.org/10.1016/j.actamat.2004.01.043.   DOI
43 Liu, J., Yan, H. and Jiang, K. (2013), "Mechanical properties of graphene platelet-reinforced alumina ceramic composites", Ceram. Int., 39(6), 6215-6221. https://doi.org/10.1016/j.ceramint.2013.01.041.   DOI
44 Lu, H., Zhang, X. and Knauss, W. G. (1997), "Conversion to bulk relaxation : Studies on Poly (MethyI Methacrylate) ", 18(2). https://doi.org/10.1002/pc.10275.   DOI
45 Jefferson, A.D., Barr, B.I.G., Bennett, T. and Hee, S.C. (2004), "Three dimensional finite element simulations of fracture tests using the Craft concrete model", Comput. Concrete, 1(3), 261-284. https://doi.org/10.12989/cac.2004.1.3.261.   DOI
46 Jiang, L. and Guo, W. (2011), "A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes", J. Mech. Phys. Solid., 59(6), 1204-1213. https://doi.org/10.1016/j.jmps.2011.03.008.   DOI
47 Khandan, A., Saber-Samandari, S., Telloo, M., Kazeroni, Z.S., Esmaeili, S., Sheikhbahaei, E., Farazin, A., Joneidi Yekta, H. and Kamyab, B. (2020), "A mitral heart valve prototype using sustainable polyurethane polymer: Fabricated by 3D bioprinter, tested by molecular dynamics simulation", AUT J. Mech. Eng.. https://doi.org/10.22060/AJME.2020.17450.5862.   DOI
48 Koga, K., Gao, G.T., Tanaka, H. and Zeng, X.C. (2001), "Formation of ordered ice nanotubes inside carbon nanotubes", Nature, 412(6849), 802-805. https://doi.org/10.1038/35090532.   DOI
49 Konsta-Gdoutos, M.S. and Aza, C.A. (2014), "Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures", Cement Concrete Compos., 53, 162-169. https://doi.org/10.1016/j.cemconcomp.2014.07.003.   DOI
50 Korayem, M.H., Sadeghzadeh, S. and Rahneshin, V. (2012), "A new multiscale methodology for modeling of single and multi-body solid structures", Comput. Mater. Sci., 63, 1-11. https://doi.org/10.1016/j.commatsci.2012.05.059.   DOI
51 Teng, C.C., Ma, C.C.M., Huang, Y.W., Yuen, S.M., Weng, C.C., Chen, C.H. and Su, S.F. (2008), "Effect of MWCNT content on rheological and dynamic mechanical properties of multiwalled carbon nanotube/polypropylene composites", Compos. Part A: Appl. Sci. Manuf., 39(12), 1869-1875. https://doi.org/10.1016/j.compositesa.2008.09.004.   DOI
52 Ma, P.C., Siddiqui, N.A., Marom, G. and Kim, J.K. (2010), "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review", Compos. Part A: Appl. Sci. Manuf., 41(10), 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003.   DOI
53 Mahboob, M. and Islam, M.Z. (2013), "Molecular dynamics simulations of defective CNT-polyethylene composite systems", Comput. Mater. Sci., 79, 223-229. https://doi.org/10.1016/j.commatsci.2013.05.042.   DOI
54 Masrour, R., Bahmad, L. and Benyoussef, A. (2012), "Size effect on magnetic properties of a nano-graphene bilayer structure: A Monte Carlo study", J. Magnet. Magnetic Mater., 324(23), 3991-3996. https://doi.org/10.1016/j.jmmm.2012.06.048.   DOI
55 Masrour, R. and Jabar, A. (2018), "Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study", Physica A: Stat. Mech. Its Appl., 497, 211-217. https://doi.org/10.1016/j.physa.2017.12.141.   DOI
56 To Baben, M., Music, D., Emmerlich, J. and Schneider, J.M. (2011), "Extending the rule of mixture to the sub unit-cell level", Scripta Materialia, 65(8), 735-738. https://doi.org/10.1016/j.scriptamat.2011.07.020.   DOI
57 Tomasi, J., Mennucci, B. and Cammi, R. (2005), "Quantum mechanical continuum solvation models", Chem. Rev., 105(8), 2999-3094. https://doi.org/10.1021/cr9904009.   DOI
58 Yan, J.W., He, J.B. and Tong, L.H. (2019). "Longitudinal and torsional vibration characteristics of boron nitride nanotubes", J. Vib. Eng. Technol., 7(3), 205-215. https://doi.org/10.1007/s42417-019-00113-4.   DOI
59 Peddavarapu, S. and Jayendra Bharathi, R. (2018), "Dry sliding wear behaviour of AA6082-5%SiC and AA6082-5%TiB2 metal matrix composites", Mater. Today: Proc., 5(6), 14507-14511. https://doi.org/10.1016/j.matpr.2018.03.038.   DOI
60 Peng, Q., Dai, Y., Liu, K., Luo, X., He, D., Tang, X. and Huang, G. (2020), "A novel carbon nanotube-magnesium oxide composite with excellent recyclability to efficiently activate peroxymonosulfate for Rhodamine B degradation", J. Mater. Sci., 55, 11267-11283. https://doi.org/10.1007/s10853-020-04822-0.   DOI
61 Pirmoradian, M., Torkan, E., Zali, H., Hashemian, M. and Toghraie, D. (2020), "Statistical and parametric instability analysis for delivery of nanoparticles through embedded DWCNT", Physica A: Stat. Mech. Its Appl., 123911. https://doi.org/10.1016/j.physa.2019.123911.   DOI
62 Kumar, P. and Srinivas, J. (2017), "Elastic behavior of CNT-reinforced polymer composites with discontinuities in CNT configurations", IOP Conf. Ser.: Mater. Sci. Eng., 178, 012016. https://doi.org/10.1088/1757-899X/178/1/012016.   DOI
63 Masrour, R. and Jabar, A. (2016), "Effect of doping of graphene structure: A Monte Carlo simulations", Superlatt. Microstruct., 98, 78-85. https://doi.org/10.1016/j.spmi.2016.08.005.   DOI
64 Masrour, R. and Jabar, A. (2017a), "Size effect in graphene nano-islands: A Monte Carlo study", J. Comput. Electron., 16(3), 576-583. https://doi.org/10.1007/s10825-017-0990-y.   DOI
65 Masrour, R. and Jabar, A. (2017b), "Magnetic properties of bilayer graphene armchair nanoribbons: A Monte Carlo study", J. Magnet. Magnetic Mater., 426, 225-229. https://doi.org/10.1016/j.jmmm.2016.11.098.   DOI
66 Lahiri, D., Singh, V., Benaduce, A.P., Seal, S., Kos, L. and Agarwal, A. (2011), "Boron nitride nanotube reinforced hydroxyapatite composite: Mechanical and tribological performance and in-vitro biocompatibility to osteoblasts", J. Mech. Behav. Biomed. Mater., 4(1), 44-56. https://doi.org/10.1016/j.jmbbm.2010.09.005.   DOI
67 Lan, H., Ye, L., Zhang, S., Peng, L., Lan, H., Ye, L., Zhang, S. and Peng, L. (2013), "Transverse dielectric properties of boron nitride nanotubes by ab initio electric field calculations Transverse dielectric properties of boron nitride nanotubes by ab initio electric field calculations", Appl. Phys. Lett., 94(18), 183110. https://doi.org/10.1063/1.3129170.   DOI
68 Li, C. and Chou, T.W. (2003a), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solid. Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8.   DOI
69 Li, C. and Chou, T.W. (2003b), "Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces", Compos. Sci. Technol., 63(11), 1517-1524. https://doi.org/10.1016/S0266-3538(03)00072-1.   DOI
70 Li, C. and Strachan, A. (2015), "Molecular scale simulations on thermoset polymers: A review", J. Polym. Sci. Part B: Polym. Phys., 53(2), 103-122. https://doi.org/10.1002/polb.23489.   DOI
71 Li, W., He, D. and Bai, J. (2013), "The influence of nano/micro hybrid structure on the mechanical and self-sensing properties of carbon nanotube-microparticle reinforced epoxy matrix composite", Compos. Part A: Appl. Sci. Manuf., 54, 28-36. https://doi.org/10.1016/j.compositesa.2013.07.002.   DOI
72 Sahmani, S. and Aghdam, M.M. (2017), "Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory", Int. J. Mech. Sci., 131-132, 95-106. https://doi.org/10.1016/j.ijmecsci.2017.06.052.   DOI
73 Mehwish, N., Kausar, A. and Siddiq, M. (2014), "Advances in polymer-based nanostructured membranes for water treatment", Polym.-Plast. Technol. Eng., 53(12), 1290-1316. https://doi.org/10.1080/03602559.2014.909465.   DOI
74 Melly, S.K., Liu, L., Liu, Y. and Leng, J. (2020), "Active composites based on shape memory polymers: overview, fabrication methods, applications, and future prospects", J. Mater. Sci., 55, 10975-11051. https://doi.org/10.1007/s10853-020-04761-w.   DOI
75 Ahmad, S., Nadeem, S., Muhammad, N. and Issakhov, A. (2020), "Radiative SWCNT and MWCNT nanofluid flow of Falkner-Skan problem with double stratification", Physica A: Stat. Mech. Its Appl., 547. https://doi.org/10.1016/j.physa.2019.124054.   DOI
76 Amini, A., Mohammadimehr, M. and Faraji, A.R. (2019), "Active control to reduce the vibration amplitude of the solar honeycomb sandwich panels with CNTRC facesheets using piezoelectric patch sensor and actuator", Steel Compos. Struct., 32(5), 671-686. https://doi.org/10.12989/scs.2019.32.5.671.   DOI
77 Ansari, R., Torabi, J. and Hosein Shakouri, A. (2017), "Vibration analysis of functionally graded carbon nanotube-reinforced composite elliptical plates using a numerical strategy", Aerosp. Sci. Tech., 60, 152-161. https://doi.org/10.1016/j.ast.2016.11.004.   DOI
78 Santosh, M., Maiti, P.K. and Sood, A.K. (2009), "Elastic properties of Boron Nitride Nanotubes and their comparison with carbon Nanotubes", J. Nanosci. Nanotechnol., 9(9), 5425-5430. https://doi.org/10.1166/jnn.2009.1197.   DOI
79 Sazali, N. (2020), "A review of the application of carbon-based membranes to hydrogen separation", J. Mater. Sci., 55, 11052- 11070. https://doi.org/10.1007/s10853-020-04829-7.   DOI
80 Shabaze, M., Sahoo, P.K. and Guptha, V.J. (2019), "Multiscale material modelling and analysis of carbon fiber/MWCNT/epoxy composites to predict effective elastic constants", Mater. Today: Proc., 19, 521-527. https://doi.org/10.1016/j.matpr.2019.07.647.   DOI
81 Shen, H.S. and Xiang, Y. (2014), "Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments", Compos. Struct., 111(1), 291-300. https://doi.org/10.1016/j.compstruct.2014.01.010.   DOI
82 Shokrieh, M.M. amd Rafiee, R. (2010), "Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach", Mater. Des., 31(2), 790-795. https://doi.org/10.1016/j.matdes.2009.07.058.   DOI
83 Srivastava, V.K. (2012), "Modeling and mechanical performance of carbon nanotube/epoxy resin composites", Mater. Des., 39, 432-436. https://doi.org/10.1016/j.matdes.2012.02.039.   DOI
84 Su, M.D. (2005), "Theoretical study of addition reactions of heavy carbenes to carbon and boron nitride nanotubes", J. Phys. Chem. B, 109(46), 21647-21657. https://doi.org/10.1021/jp053452c.   DOI
85 AkhavanAlavi, S.M., Mohammadimehr, M. and Edjtahed, S.H. (2019), "Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method", Eur. J. Mech. A/Solid., 74, 449-461. https://doi.org/10.1016/j.euromechsol.2018.12.008.   DOI
86 Aqel, A., El-Nour, K.M.M.A., Ammar, R.A.A. and Al-Warthan, A. (2012), "Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation", Arab. J. Chem., 5(1), 1-23. https://doi.org/10.1016/j.arabjc.2010.08.022.   DOI
87 Babaeeian, M. and Mohammadimehr, M. (2020), "Investigation of the time elapsed effect on residual stress measurement in a composite plate by DIC method", Opt. Laser. Eng., 128, 106002. https://doi.org/10.1016/j.optlaseng.2020.106002.   DOI
88 Bastrakov, S., Meyerov, I., Gergel, V., Gonoskov, A., Gorshkov, A., Efimenko, E., Ivanchenko, M., Kirillin, M., Malova, A., Osipov, G., Petrov, V., Surmin, I. and Vildemanov, A. (2013), "High performance computing in biomedical applications", Procedia Comput. Sci., 18, 10-19. https://doi.org/10.1016/j.procs.2013.05.164.   DOI
89 Behfar, K. and Naghdabadi, R. (2005), "Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium", Compos. Sci. Technol., 65(7-8), 1159-1164. https://doi.org/10.1016/j.compscitech.2004.11.011.   DOI
90 Belhamra, S., Masrour, R. and Jabar, A. (2020), "Magnetic and thermodynamic properties of thin films superlattice: A Monte Carlo study", Thin Solid Film., 711, 138304. https://doi.org/10.1016/j.tsf.2020.138304.   DOI
91 Abdelrazek, E.M., Hezma, A.M., El-khodary, A. and Elzayat, A.M. (2016), "Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend", Egypt. J. Basic Appl. Sci., 3(1), 10-15. https://doi.org/10.1016/j.ejbas.2015.06.001.   DOI
92 Zheng, X., Zhou, X., Xu, J., Zou, L., Nie, W., Hu, X., Dai, S., Qiu, Y. and Yuan, N. (2020), "Highly stretchable CNT/MnO2 nanosheets fiber supercapacitors with high energy density", J. Mater. Sci., 55(19), 8251-8263. https://doi.org/10.1007/s10853-020-04608-4.   DOI
93 Zheng, Z., Xiao, R., Shi, H., Li, G. and Zhou, X. (2015), "Statistical regularities of Carbon emission trading market: evidence from european union allowances", Physica A: Stat. Mech. Its Appl., 426, 9-15. https://doi.org/10.1016/j.physa.2015.01.018.   DOI
94 Zhou, W., Bai, X., Wang, E. and Xie, S. (2009), "Synthesis, structure, and properties of single-walled carbon nanotubes", Adv. Mater., 21(45), 4565-4583. https://doi.org/10.1002/adma.200901071.   DOI
95 Trivedi, S., Sharma, S.C. and Harsha, S.P. (2014), "Evaluations of Young's modulus of boron nitride nanotube reinforced nano-composites", Procedia Materials Sci., 6, 1899-1905. https://doi.org/10.1016/j.mspro.2014.07.222.   DOI
96 Van Mien, T., Stitmannaithum, B. and Nawa, T. (2009), "Simulation of chloride penetration into concrete structures subjected to both cyclic flexural loads and tidal effects", Comput. Concrete, 6(5), 421-435. http://dx.doi.org/10.12989/cac.2009.6.5.421.   DOI
97 Vu, T.T., Dau, T.N.N., Ly, C.T., Pham, D.C., Nguyen, T.T.N. and Pham, V.T. (2020), "Aqueous electrodeposition of (AuNPs/MWCNT-PEDOT) composite for high-affinity acetylcholinesterase electrochemical sensors", J. Mater. Sci., 1-12. https://doi.org/10.1007/s10853-020-04657-9.   DOI
98 Wang, J., Lee, C.H. and Yap, Y.K. (2010), "Recent advancements in boron nitride nanotubes", Nanoscale, 2(10), 2028-2034. https://doi.org/10.1039/c0nr00335b.   DOI
99 WenXing, B., ChangChun, Z. and WanZhao, C. (2004), "Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics", Physica B: Condens. Matter., 352(1-4), 156-163. https://doi.org/10.1016/j.physb.2004.07.005.   DOI
100 Belza, T., Pavlinek, V., Saha, P., Benes, M.J., Horak, D. and Quadrat, O. (2007), "Electrorheology of silicone oil suspensions of urea-modified poly[(glycidyl methacrylate)-co-(ethylene dimethacrylate)] particles", Physica A: Stat. Mech. Its Appl., 385(1), 1-8. https://doi.org/10.1016/j.physa.2007.06.042.   DOI
101 Bobinski, J. and Tejchman, J. (2004), "Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity", Comput. Concrete, 1(4), 433-455. https://doi.org/10.12989/cac.2004.1.4.433.   DOI
102 Chandran, R. and Gifty Honeyta A.M. (2017), "Simplified equation for Young's modulus of CNT reinforced concrete", AIP Adv., 7(12), 125122. https://doi.org/10.1063/1.5011319.   DOI
103 Coleman, J.N., Khan, U., Blau, W.J. and Gunko, Y.K. (2006), "Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites", Carbon, 44(9), 1624-1652. https://doi.org/10.1016/j.carbon.2006.02.038.   DOI
104 Deng, L., Eichhorn, S.J., Kao, C.C. and Young, R.J. (2011), "The effective young's modulus of carbon nanotubes in composites", ACS Appl. Mater. Interf., 3(2), 433-440. https://doi.org/10.1021/am1010145.   DOI
105 Du, J.H., Bai, J. and Cheng, H.M. (2007), "The present status and key problems of carbon nanotube based polymer composites", Exp. Polym. Lett., 1(5), 253-273. https://doi.org/10.3144/expresspolymlett.2007.39.   DOI
106 Du, Y., Huang, L., Wang, Y., Yang, K., Zhang, Z., Wang, Y., Kipper, M.J., Belfiore, L.A. and Tang, J. (2020), "Preparation of graphene oxide/silica hybrid composite membranes and performance studies in water treatment", J. Mater. Sci., 1-15. https://doi.org/10.1007/s10853-020-04774-5.   DOI
107 Wu, H., Fahy, W.P., Kim, S., Kim, H., Zhao, N., Pilato, L., Kafi, A., Bateman, S. and Koo, J.H. (2020), "Recent developments in polymers/polymer nanocomposites for additive manufacturing", Prog. Mater. Sci., 111, 100638. https://doi.org/10.1016/j.pmatsci.2020.100638.   DOI
108 Yue, Z., Xu, H., Yuan, G. and Pang, H. (2019), "Modeling study of knowledge diffusion in scientific collaboration networks based on differential dynamics: A case study in graphene field", Physica A: Stat. Mech. Its Appl., 524, 375-391. https://doi.org/10.1016/j.physa.2019.04.201.   DOI
109 Zhang, B., Li, Q. and Cui, T. (2012), "Ultra-sensitive suspended graphene nanocomposite cancer sensors with strong suppression of electrical noise", Biosens. Bioelectron., 31(1), 105-109. https://doi.org/10.1016/j.bios.2011.09.046.   DOI
110 Zhang, C.L. and Shen, H.S. (2006), "Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation", Appl. Phys. Lett., 89(8), 81904. https://doi.org/10.1063/1.2336622.   DOI
111 Zhang, C.L. and Shen, H.S. (2008), "Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation", J. Phys. D: Appl. Phys., 41(5). https://doi.org/10.1088/0022-3727/41/5/055404.   DOI
112 Zhang, L., Sun, X., Pan, M., Yang, X., Liu, Y., Sun, J., Wang, Q., Zheng, J., Wang, Y. and Ma, J. (2020), "Interfacial effects between carbon nanotube templates and precursors on fabricating a wall-crystallized hierarchical pore system in zeolite crystals", J. Mater. Sci., 1-15. https://doi.org/10.1007/s10853-020-04708-1.   DOI
113 Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., 7(2), 109. http://dx.doi.org/10.12989/anr.2019.7.2.109.   DOI
114 Farazin, A., Aghadavoudi, F., Motififard, M., Saber-Samandari, S. and Khandan, A. (2020), "Nanostructure, molecular dynamics simulation and mechanical performance of PCL membranes reinforced with antibacterial nanoparticles", J. Appl. Comput. Mech., 27, 100-111. https://doi.org/10.22055/JACM.2020.32902.2097.   DOI
115 Farazin, A., Aghdam, H.A., Motififard, M., Aghadavoudi, F., Kordjamshidi, A., Saber-Samandari, S., Esmaeili, S. and Khandan, A. (2019), "A polycaprolactone bio-nanocomposite bone substitute fabricated for femoral fracture approaches: Molecular dynamic and micro-mechanical investigation", J. Nanoanalys., 6(3), 172-184. https://doi.org/10.22034/JNA.2019.668028.   DOI
116 Farazin, A. and Mohammadimehr, M. (2020), "Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: a molecular dynamics simulation", Adv. Nano Res., 9(2), 83-90. http://dx.doi.org/10.12989/anr.2020.9.2.083.   DOI
117 Fletcher-Woods, J., Noble, J. and Balfour, L. (2017), "The effect on dynamic steel tube umbilical fatigue performance associated with designing for elevated temperature", ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers Digital Collection. June.
118 Frankland, S. (2003), "The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation", Compos. Sci. Technol., 63(11), 1655-1661. https://doi.org/10.1016/S0266-3538(03)00059-9.   DOI
119 Zhao, Y., Chen, X., Park, C., Fay, C.C., Stupkiewicz, S. and Ke, C. (2014), "Mechanical deformations of boron nitride nanotubes in crossed junctions", J. Appl. Phys., 115(16), 164305. https://doi.org/10.1063/1.4872238.   DOI
120 Ghavamian, A., Rahmandoust, M. and Ochsner, A. (2013), "On the determination of the shear modulus of carbon nanotubes", Compos. Part B: Eng., 44(1), 52-59. https://doi.org/10.1016/j.compositesb.2012.07.040.   DOI
121 Ghorbanpour Arani, A., BabaAkbar Zarei, H., Eskandari, M. and Pourmousa, P. (2019a), "Vibration behavior of visco-elastically coupled sandwich beams with magnetorheological core and three-phase carbon nanotubes/fiber/polymer composite facesheets subjected to external magnetic field", J. Sandw. Struct. Mater., 21(7), 2194-2218. https://doi.org/10.1177/1099636217743177.   DOI
122 Ghorbanpour Arani, A., Emdadi, M., Ashrafi, H., Mohammadimehr, M., Niknejad, S., Ghorbanpour Arani, A.A. and Hosseinpour, A. (2019b), "Analysis of viscoelastic functionally graded sandwich plates with CNT reinforced composite face sheets on viscoelastic foundation", J. Solid Mech., 11(4), 690-706. https://doi.org/10.22034/JSM.2019.668608.   DOI
123 Ghorbanpour Arani, A., Rousta Navi, B. and Mohammadimehr, M. (2016), "Surface stress and agglomeration effects on nonlocal biaxial buckling polymeric nanocomposite plate reinforced by CNT using various approaches", Adv. Compos. Mater., 25(5), 423-441. https://doi.org/10.1080/09243046.2015.1052189.   DOI
124 Griebel, M. and Hamaekers, J. (2007), "Molecular dynamics simulations of boron-nitride nanotubes embedded in amorphous Si-B-N", Comput. Mater. Sci., 39(3), 502-517. https://doi.org/10.1016/j.commatsci.2006.06.013.   DOI
125 Grujicic, M., Cao, G. and Singh, R. (2003), "The effect of topological defects and oxygen adsorption on the electronic transport properties of single-walled carbon-nanotubes", Appl. Surf. Sci., 211(1-4), 166-183. https://doi.org/10.1016/S0169-4332(03)00224-1.   DOI