Browse > Article
http://dx.doi.org/10.12989/cac.2020.26.6.533

Prediction of concrete spall damage under blast: Neural approach with synthetic data  

Dauji, Saha (NRB Office, Bhabha Atomic Research Centre)
Publication Information
Computers and Concrete / v.26, no.6, 2020 , pp. 533-546 More about this Journal
Abstract
The prediction of spall response of reinforced concrete members like columns and slabs have been attempted by earlier researchers with analytical solutions, as well as with empirical models developed from data generated from physical or numerical experiments, with different degrees of success. In this article, compared to the empirical models, more versatile and accurate models are developed based on model-free approach of artificial neural network (ANN). Synthetic data extracted from the results of numerical experiments from literature have been utilized for the purpose of training and testing of the ANN models. For two concrete members, namely, slabs and columns, different sets of ANN models were developed, each of which proved to have definite advantages over the corresponding empirical model reported in literature. In case of slabs, for all three categories of spall, the ANN model results were superior to the empirical models as evaluated by the various performance metrics, such as correlation, root mean square error, mean absolute error, maximum overestimation and maximum underestimation. The ANN models for each category of column spall could handle three variables together: namely, depth, spacing of longitudinal and transverse reinforcement, as contrasted to the empirical models that handled one variable at a time, and at the same time yielded comparable performance. The application of the ANN models for spall prediction of concrete slabs and columns developed in this study has been discussed along with their limitations.
Keywords
concrete; spall; blast; artificial neural network; synthetic data;
Citations & Related Records
Times Cited By KSCI : 20  (Citation Analysis)
연도 인용수 순위
1 Wu, L., Peng, Y., Fan, J. and Wang, Y. (2019), "Machine learning models for the estimation of monthly mean daily reference evapotranspiration based on cross-station and synthetic data", Hydrol. Res., 50(6), 1730-1750. https://doi.org/10.2166/nh.2019.060.   DOI
2 Xu, J., Wu, C., Xiang, H., Su, Y., Li, Z., Fang, Q., Hao, H., Liu, Z., Zhang, Y. and Li, J. (2016), "Behaviour of ultra high performance fibre reinforced concrete columns subjected to blast loading", Eng. Struct., 118, 97-107. http://dx.doi.org/10.1016/j.engstruct.2016.03.048.   DOI
3 Xu, K. and Lu, Y. (2006), "Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading", Comput. Struct., 84, 431-438. http://dx.doi.org/10.1016/j.compstruc.2005.09.029.   DOI
4 Xu, P.B., Xu, H. and Wen, H.M. (2016), "3D meso-mechanical modeling of concrete spall tests", Int. J. Impact Eng., 97, 46-56. http://dx.doi.org/10.1016/j.ijimpeng.2016.06.005.   DOI
5 Kostic, S., Perc, M., Vasovic, N. and Trajkovic, S. (2013), "Predictions of Experimentally Observed Stochastic Ground Vibrations Induced by Blasting", PLoS ONE, 8(12), e82056, 1-13. http://dx.doi.org/10.1371/journal.pone.0082056.   DOI
6 Kot, C.A. (1977), "Spalling of concrete walls under blast load", Proceedings of 4th Structural Mechanics in Reactor Technology SMIRT 4, J10/5, Nuclear Engineering and Design, San Francisco, CA.
7 Le, T.A., Baydin, A.G., Zinkov, R. and Wood, F. (2017), "Using synthetic data to train neural networks is model-based reasoning", IEEE Xplore Proceedings of International Joint Conference on Neural Networks (IJCNN), 3514-3521, Anchorage, AK, USA.
8 Li, J. and Hao, H. (2014), "Numerical study of concrete spall damage to blast loads", Int. J. Impact Eng., 68, 41-55. http://dx.doi.org/10.1016/j.ijimpeng.2014.02.001.   DOI
9 Li, J., Wu, C., Hao, H., Wang, Z. and Su, Y. (2016), "Experimental investigation of ultra-high performance concrete slabs under contact explosions", Int. J. Impact Eng., 93, 62-75. http://dx.doi.org/10.1016/j.ijimpeng.2016.02.007.   DOI
10 Longjun, D., Xibing, L., Ming, X. and Qiyue, L. (2011), "Comparisons of random forest and support vector machine for predicting blasting vibration characteristic parameters", Procedia. 26, 1772-1781. http://dx.doi.org/10.1016/j.proeng.2011.11.2366.   DOI
11 Lu, Y. (2005), "Underground blast induced ground shock and its modelling using artificial neural network", Comput. Geotech., 32, 164-178. http://dx.doi.org/10.1016/j.compgeo.2005.01.007.   DOI
12 Zhang, Y., Zhao, K., Li, Y., Gu, J., Ye, Z. and Ma, J. (2018), "Study on the local damage of SFRC with different fraction under contact blast loading", Comput. Concrete, 22(1), 63-70. http://dx.doi.org/10.12989/cac.2018.22.1.063.   DOI
13 Yao, S., Zhang, D., Chen, X., Lu, F. and Wang, W. (2016b), "Experimental and numerical study on the dynamic response of RC slabs under blast loading", Eng. Fail. Anal., 66, 120-129. http://dx.doi.org/10.1016/j.engfailanal.2016.04.027.   DOI
14 Yao, S., Zhang, D., Lu, F., Wang, W. and Chen, X. (2016a), "Damage features and dynamic response of RC beams under blast", Eng. Fail. Anal., 62, 103-111. http://dx.doi.org/10.1016/j.engfailanal.2015.12.001.   DOI
15 Yavuz, G. (2019), "Determining the shear strength of FRP-RC beams using soft computing and code methods", Comput. Concrete, 23(1), 49-60. http://dx.doi.org/10.12989/cac.2019.23.1.049.   DOI
16 Powell, H.C., Lach, J. and Brandt-Pearce, M. (2010), "Systematic estimation of ANN classification performance employing synthetic data", IEEE Xplore Proceeding of IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2010), Kittila, Finland. https://dx.doi.org/10.1109/MLSP.2010.5589207.   DOI
17 Marto, A., Hajihassani, M., Armaghani, D.J., Mohamad, E.T. and Makhtar, A.M. (2014), "A novel approach for blast-induced flyrock prediction based on imperialist competitive algorithm and artificial neural network", Scientif. World J., 2014, Article ID 643715, 1-11. http://dx.doi.org/10.1155/2014/643715.   DOI
18 Minns, A.W. and Hall, M.J. (1996), "Artificial neural networks as rainfall runoff models", Hydrolog. Sci. J., 41(3), 399-418.   DOI
19 Mitelman, A. and Elmo, D. (2016), "Analysis of tunnel support design to withstand spalling induced by blasting", Tunnel. Underg. Space Technol., 51, 354-361. http://dx.doi.org/10.1016/j.tust.2015.10.006.   DOI
20 Ordonez, D., Dafonte, C., Manteiga, M. and Arcay, B. (2010), "Parameterization of RVS synthetic stellar spectra for the ESA Gaia mission: Study of the optimal domain for ANN training", Exp. Syst. Appl., 37, 1719-1727. https://dx.doi.org/10.1016/j.eswa.2009.07.038.   DOI
21 Raman, H. and Sunilkumar, N. (1995), "Multivariate modelling of water resources time-series using artificial neural networks", Hydrolog. Sci. J., 40(2), 145-163.   DOI
22 Rashad, M. and Yang, T.Y. (2019), "Improved nonlinear modelling approach of simply supported PC slab under free blast load using RHT model", Comput. Concrete, 23(2), 121-131. http://dx.doi.org/10.12989/cac.2019.23.2.121.   DOI
23 Remennikov, A.M. and Rose, T.A. (2007), "Predicting the effectiveness of blast wall barriers using neural networks", Int. J. Impact Eng., 34, 1907-1923. http://dx.doi.org/10.1016/j.ijimpeng.2006.11.003.   DOI
24 Saadat, M., Khandelwal, M. and Monjezi, M. (2013), "An ANNbased approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran", J. Rock Mech. Geotech. Eng., 6(1), 67-76. http://dx.doi.org/10.1016/j.jrmge.2013.11.001.   DOI
25 McVay, M.K. (1988), Spall Damage of Concrete Structures, DTIC Document.
26 Tsai, H.C. and Liao, M.C. (2019), "Knowledge-based learning for modeling concrete compressive strength using genetic programming", Comput. Concrete, 23(4), 255-265. http://dx.doi.org/10.12989/cac.2019.23.4.255.   DOI
27 Sadaghian, H. and Farzam, M. (2019), "Numerical investigation on punching shear of RC slabs exposed to fire", Comput. Concrete, 23(3), 217-233. http://dx.doi.org/10.12989/cac.2018.23.3.217.   DOI
28 Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm", Comput. Concrete, 22(4), 355-363. http://dx.doi.org/10.12989/cac.2018.22.4.355.   DOI
29 Shirkhani, A., Davarnia, D. and Azar, B.F. (2019), "Prediction of bond strength between concrete and rebar under corrosion using ANN", Comput. Concrete, 23(4), 273-279. http://dx.doi.org/10.12989/cac.2019.23.4.273.   DOI
30 Smith, J. and Eli, R.N. (1995), "Neural network models of rainfallrunoff process", ASCE J. Water Resour. Plan. Manage., 121(6), 499-508.   DOI
31 Wasserman, P.D. (1993), Advanced Methods in Neural Computing, Van Nostrand Reinhold Company, New York.
32 Aksoy, H. and Dahamsheh, A. (2018), "Markov chain-incorporated and synthetic data-supported conditional artificial neural network models for forecasting monthly precipitation in arid regions", J. Hydrol., 562, 758-779. https://doi.org/10.1016/j.jhydrol.2018.05.030.   DOI
33 Alavi, A.H. and Gandomi, A.H. (2011), "Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural network and simulated annealing", Comput. Struct., 89(23-24), 2176-2194. http://dx.doi.org/10.1016/j.compstruc.2011.08.019.   DOI
34 Armaghani, D.J., Hajihassani, M., Marto, A., Faradonbeh, R.S. and Mohamad, E.T. (2015), "Prediction of blast-induced air overpressure: a hybrid AI-based predictive model", Environ. Monit. Assess., 187(11), 666. http://dx.doi.org/10.1007/s10661-015-4895-6.   DOI
35 Dauji, S. (2018), "Neural prediction of concrete compressive strength", Int. J. Mater. Struct. Integrit., 12(1/2/3), 17-35. http://dx.doi.org/10.1504/IJMSI.2018.10014931.   DOI
36 Baronian, C., Riahi, M.A. and Lucas, C. (2009), "Applicability of artificial neural networks for obtaining velocity models from synthetic seismic data", Int. J. Earth Sci., 98, 1173-1184. https://dx.doi.org/10.1007/s00531-008-0314-3.   DOI
37 Baudat, G. (2020), "Low-cost wavefront sensing using artificial intelligence (AI) with synthetic data", Proceedings of Society of Photo-Optical Instrumentation Engineers Photonics 11354, Optical Sensing and Detection VI, 113541G, Europe. https://doi.org/10.1117/12.2564070.   DOI
38 Bose, N.K. and Liang, P. (1993), Neural Networks Fundamentals with Graphs, Algorithms, and Applications, Tata-McGraw-Hill Publishing Company Limited, New Delhi.
39 Dauji, S. (2019), "Estimation of corrosion current density from resistivity of concrete with neural network", INAE Lett., 4(2), 111-121. https://doi.org/10.1007/s41403-019-00071-z.   DOI
40 Dauji, S. (2020), "Prediction accuracy of underground blast variables: decision tree and artificial neural network", Int. J. Earthq. Impact Eng., 3(1), 40-59. https://doi.org/10.1504/IJEIE.2020.105382.   DOI
41 Ekstrom, J., Rempling, R. and Plos, M. (2016), "Spalling in concrete subjected to shock wave blast", Eng. Struct., 122, 72-82. http://dx.doi.org/10.1016/j.engstruct.2016.05.002.   DOI
42 Golafshani, E.M. and Pazouki, G. (2018), "Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method", Comput. Concrete, 22(4), 355-363. http://dx.doi.org/10.12989/cac.2018.22.4.419.   DOI
43 Haykin, S.O. (2008), Neural Networks and Machine Learning, Pearson Education, New Delhi.
44 Adhikary, S.D., Chandra, L.R., Christian, A. and Ong, K.C.G. (2016), "Influence of cylindrical charge orientation on the blast response of high strength concrete panels", Eng. Struct., 149, 35-49. http://dx.doi.org/10.1016/j.engstruct.2016.04.035.   DOI
45 Ahmad, S., Pilakoutas, K., Rafi, M.M. and Zaman, Q.U. (2018), "Bond strength prediction of steel bars in low strength concrete by using ANN", Comput. Concrete, 22(2), 249-259. http://dx.doi.org/10.12989/cac.2018.22.2.249.   DOI
46 Hajihassani, M., Armaghani, D.J., Sohaei, H., Mohamad, E.T. and Marto, A. (2014), "Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization", Appl. Acoust., 80, 57-67. http://dx.doi.org/10.1016/j.apacoust.2014.01.005.   DOI
47 Kaya, M. (2018), "Developing a new mutation operator to solve the RC deep beam problems by aid of genetic algorithm", Comput. Concrete, 22(5), 493-500. http://dx.doi.org/10.12989/cac.2018.22.5.493.   DOI
48 Khandelwal, M. and Singh, T.N. (2006), "Prediction of blast induced ground vibrations and frequency in opencast mine: A neural network approach", J. Sound Vib., 289, 711-725. http://dx.doi.org/10.1016/j.jsv.2005.02.044.   DOI
49 Khandelwal, M. and Singh, T.N. (2007), "Evaluation of blast-induced ground vibration predictors", Soil Dyn. Earthq. Eng., 27, 116-125. http://dx.doi.org/10.1016/j.soildyn.2006.06.004.   DOI
50 Khandelwal, M. and Singh, T.N. (2009), "Prediction of blast-induced ground vibration using artificial neural network", Int. J. Rock Mech. Min. Sci., 46, 1214-1222. http://dx.doi.org/10.1016/j.ijrmms.2009.03.004.   DOI