Browse > Article
http://dx.doi.org/10.12989/cac.2013.12.1.001

Actual microstructure-based numerical method for mesomechanics of concrete  

Chena, S. (Department of Civil Engineering, The University of Hong Kong)
Yueb, Z.Q. (Department of Civil Engineering, The University of Hong Kong)
Kwan, A.K.H. (Department of Civil Engineering, The University of Hong Kong)
Publication Information
Computers and Concrete / v.12, no.1, 2013 , pp. 1-18 More about this Journal
Abstract
This paper presents an actual microstructure-based numerical method to investigate the mechanical properties of concrete at mesoscopic level. Digital image processing technique is used to capture the concrete surface image and generate the actual 3-phase microstructure of the concrete, which consists of aggregate, matrix and interfacial transition zones. The microstructure so generated is then transformed into a mesh or grid for numerical analysis. A finite difference code FLAC2D is used for the numerical analysis to simulate the mechanical responses and failure patterns of the concrete. Several cases of concrete with different degrees of material heterogeneity and under different compression loading conditions have been analysed. From the numerical results, the effects of the internal material heterogeneities as well as the external confining stresses are studied. It is shown that the material heterogeneities arising from the presence of different phases and the existence of interfacial transition zones have great influence on the overall mechanical behaviour of concrete and that the numerically simulated behaviour of concrete with or without confining stresses applied agrees quite well with the general observations reported in the literature.
Keywords
digital image processing; interfacial transition zones; mesomechanics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yue, Z.Q., Chen, S. and Tham, L.G. (2003a), "Finite element modeling of geomaterials using digital image processing", Comput. Geo., 30(5), 375-397.   DOI   ScienceOn
2 Yue, Z.Q., Chen, S. and Tham, L.G. (2003b), "Seepage analysis in inhomogeneous geomaterials using digital image processing based finite element method", Proceedings of the 12th Panamerican Conference for Soil Mechanics and Geotechnical Engineering and the 39th US Rock Mechanics Symposium, Soil and Rock America, Boston.
3 Yue, Z.Q. and Morin, I. (1996), "Digital image processing for aggregate orientation in asphalt concrete mixtures", Can. J. Civil Eng., 23(2), 480-489.   DOI   ScienceOn
4 Zaitsev, Y.B. and Wittmann, F.H. (1981), "Simulation of crack propagation and failure of concrete", Mater. Construct., 14(5), 357-365.   DOI
5 Zhu, W.C., Teng, J.G. and Tang, C.A. (2004), "Mesomechanical model for concrete. Part I: Model development", Mag. Conc. Res., 56(6), 313-330.   DOI   ScienceOn
6 Leite, J.P.B., Slowik, V. and Apel, J. (2007), "Computational model of mesoscopic structure of concrete for simulation of fracture processes", Comput. Struct., 85(17-18), 1293-1303.   DOI   ScienceOn
7 Mindess, S. (1996), "Tests to determine the mechanical properties of the interfacial zone", Interfacial Transition Zone in Concrete: State-of-the-Art Report prepared by RILEM Technical Committee 108-ICC, Interfaces in Cementitious Composites, Toulouse, France.
8 Mora, C.F. and Kwan, A.K.H. (2000), "Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing", Cement Concrete Res., 30(3), 351-358.   DOI   ScienceOn
9 Mora, C.F., Kwan, A.K.H. and Chan, H.C. (1998), "Particle size distribution analysis of coarse aggregate using digital image processing", Cement Concrete Res., 28(6), 921-932.   DOI   ScienceOn
10 De Schutter, G. and Taerwe, L. (1993), "Random particle model for concrete based on Delaunay triangulation", Mater. Struct., 26(2), 67-73.   DOI
11 Diamond, S. and Huang, J.D. (2001), "The ITZ in concrete - a different view based on image analysis and SEM observations", Cement Concrete Compos., 23(2-3), 179-188.   DOI   ScienceOn
12 Fang, Z. and Harrison, J.P. (2001), "A mechanical degradation index for rock", Int. J. Rock Mech. Min. Sci., 38(8), 1193-1199.   DOI   ScienceOn
13 Fang, Z. and Harrison, J.P. (2002), "Development of a local degradation approach to the modeling of brittle fracture in heterogeneous rocks", Int. J. Rock Mech. Min. Sci., 39(4), 443-457.   DOI   ScienceOn
14 ITASCA (1995), Fast Lagrangian Analysis of Continua (Version 3.3), Minnesota, USA.
15 Kwan, A.K.H., Mora, C.F. and Chan, H.C. (1999a), "Particle shape analysis of coarse aggregate using digital image processing", Cement Concrete Res., 29(9), 1403-1410.   DOI   ScienceOn
16 Kwan, A.K.H., Wang, Z.M. and Chan, H.C. (1999b), "Mesoscopic study of concrete II: nonlinear finite element analysis", Comput. Struct., 70(5), 545-556.   DOI   ScienceOn
17 Liao, K.Y., Chang, P.K., Peng, Y.N. and Yang, C.C. (2004), "A study on characteristics of interfacial transition zone in concrete", Cement Concrete Res., 34(6), 977-989.   DOI   ScienceOn
18 Bazant, Z.P., Tabbara, M.R., Kazemi, M.T. and Pijaudier-Cabot, G. (1990), "Random particle model for fracture of aggregate or fiber composites", J. Eng. Mech. ASCE, 116(8), 1686-1705.   DOI
19 Billaux, D., Detournay, C., Hart, R. and Rachez, X. (2001), "FLAC and numerical modeling in geomechanics", Proceedings of the 2nd International FLAC Symposium, Lyon, France.
20 Brady, B.H.G. and Brown, E.T. (1992), Rock Mechanics for Underground Mining (2nd ed.), Chapman & Hall, London.
21 Chen, S., Yue, Z.Q., Tham, L.G. and Lee, P.K.K. (2004a), "Modeling of the indirect tensile test for inhomogeneous granite using a digital image-based numerical method", Int. J. Rock Mech. Min. Sci., 41(3), 447 (SINOROCK Paper No. 2B01 in CDROM).
22 Chen, S., Yue, Z.Q. and Tham, L.G. (2004b), "Digital image-based numerical modeling method for prediction of inhomogeneous rock failure", Int. J. Rock Mech. Min. Sci., 41(6), 939-957.   DOI   ScienceOn
23 Chermant, J.L. (2001), "Why automatic image analysis? An introduction to this issue", Cement Concrete Compos., 23(2-3), 127-131.   DOI   ScienceOn
24 Chermant, J.L., Chermant, L., Coster, M., Dequiedt, A.S. and Redon, C. (2001), "Some fields of applications of automatic image analysis in civil engineering", Cement Concrete Compos, 23(2-3), 157-169.   DOI   ScienceOn
25 Wang, Z.M., Kwan, A.K.H. and Chan, H.C. (1999), "Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh", Comput. Struct., 70(5), 533-544.   DOI   ScienceOn
26 Scrivener, K.L. and Pratt, P.L. (1996), "Characterisation of interfacial microstructure", Interfacial Transition Zone in Concrete: State-of-the-Art Report prepared by RILEM Technical Committee 108-ICC, Interfaces in Cementitious Composites, Toulouse, France.
27 Sheng, Q., Yue, Z.Q., Lee, C.F., Tham, L.G. and Zhou, H. (2002), "Estimating the excavation disturbed zone in permanent shiplock slopes of the Three Gorges Project, China", Int. J. Rock Mech. Min. Sci., 39(2), 165-184.   DOI   ScienceOn
28 The MathWorks Inc. (2007), Getting Started with MATLAB(R) 7, Website: http://www.mathworks.com/.
29 Wittmann, F.H., Roelfstra, P.E. and Sadouki, H. (1984), "Simulation and analysis of composite structures", Mater. Sci. Eng., 68(2), 239-248.
30 Wriggers, P. and Moftah, S.O. (2006), "Mesoscale models for concrete: homogenisation and damage behaviour", Finite Elements Anal. Design, 42(7), 623-636.   DOI   ScienceOn
31 Rempling, R. and Grassl, P. (2008), "A parametric study of the meso-scale modelling of concrete subjected to cyclic compression", Cement Concrete, 5(4), 359-373.
32 Oliver, J.P., Maso, J.C. and Bourdette, B. (1995), "Interfacial transition zone in concrete", Adv. Cement Based Mater., 2(1), 30-38.   DOI   ScienceOn
33 Paterson, M.S. (1978), Experimental Rock Deformation: the Brittle Field, Springer, Berlin.
34 Raghuprasad, B.K., Bhat, D.N. and Bhattacharya, G.S. (1998), "Simulation of fracture in a quasi-brittle material in direct tension - a lattice model", Eng. Fract. Mech., 61(3-4), 445-460.   DOI   ScienceOn
35 Schlangen, E. and Van Mier, J.G.M. (1992), "Experimental and numerical analysis of micromechanisms of fracture of cement-based composites", Cement Conrete Compos., 14(2), 105-118.   DOI   ScienceOn
36 Schlangen, E. and Garboczi, E.J. (1996), "New method for simulating fracture using an elastically uniform random geometry lattice", Int. J. Eng. Sci., 34(10), 1131-1144.   DOI   ScienceOn
37 Akcaoglu, T., Tokyay, M. and Celik, T. (2005), "Assessing the ITZ microcracking via scanning electron microscope and its effect on the failure behavior of concrete", Cement Concrete Res., 35(2), 358-363.   DOI   ScienceOn
38 Azevedo, N., May, I. and Lemos, I.J. (2002), "Numerical simulations of plain concrete under shear loading conditions", Numerical Modeling in Micromechanics via Particle Methods - Proceedings of the 1st International PFC Symposium, Gelsenkirchen, Germany.
39 Comby-Peyrot, I., Bernard, F., Bouchard, P.O., Bay, F. and Garcia-Diaz, E. (2009), "Development and validation of a 3D computational tool to describe concrete behaviour at mesoscale: application to the alkali-silica reaction", Comput. Mater. Sci., 46(4), 1163-1177.   DOI   ScienceOn