Browse > Article
http://dx.doi.org/10.12989/was.2021.33.5.367

CFD model validation with experimental tornado wind field & comparison of wind field in different tornado chambers  

Verma, Sumit (Department of Civil Engineering, University of Arkansas)
Selvam, Rathinam P. (Department of Civil Engineering, University of Arkansas)
Publication Information
Wind and Structures / v.33, no.5, 2021 , pp. 367-381 More about this Journal
Abstract
Validation of CFD tornado wind field with experimental or field measurements is limited to comparison of tangential velocity profile at certain elevations above the ground level and few studies are based on comparison of pressure profile. However, important tornado vortex features such as touchdown swirl ratio (ST), core radius (rc), maximum tangential velocity (Vtmax), elevation of maximum tangential velocity (zc) and pressure distribution over a range of varying swirl ratios which strongly influences tornado forces on a building have not been accounted for validation of tornado wind field. In this study, important tornado vortex features are identified and validated with experimental measurements; the important tornado features obtained from the CFD model are found to be in reasonable agreement with experimental measurements. Besides, tornado chambers with different geometrical features (such as different outlet size and location and total heights) are used in different works of literature; however, the effect of variation of those key geometrical features on tornado wind field is not very well understood yet. So, in this work, the size of outlet and total height are systematically varied to study the effect on important tornado vortex parameters. Results indicate that reducing outlet diameter in a tornado chamber increases ST, Vtmax and zc and decreases rc. Similarly, increasing total height of tornado chamber decreases ST, Vtmax and rc whereas zc remains nearly constant. Overall, it is found that variation of outlet diameter has a stronger effect on tornado wind field than the variation in total height of tornado chamber.
Keywords
3D tornado simulation; CFD flow validation; Tornado chamber geometry variation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nolan, D.S. and Farrell, B.F. (1999), "The structure and dynamics of tornado-like vortices", J. Atmos. Sci., 56(16), 2908-2936. https://doi.org/10.1175/1520-0469(1999)056<2908:TSADOT>2.0.CO;2.   DOI
2 Refan, M. and Hangan, H. (2016), "Characterization of tornado-like flow fields in a new model scale wind testing chamber", J. Wind Eng. Ind. Aerod., 151, 107-121. https://doi.org/10.1016/j.jweia.2016.02.002.   DOI
3 Refan, M. and Hangan, H. (2018), "Near surface experimental exploration of tornado vortices", J. Wind Eng. Ind. Aerod., 175, 120-135. https://doi.org/10.1016/j.jweia.2018.01.042.   DOI
4 Rotunno, R. (1977), "Numerical simulation of a laboratory vortex", J. Atmos. Sci., 34(12), 1942-1956. https://doi.org/10.1175/1520-0469(1977)034<1942:NSOALV>2.0.CO;2.   DOI
5 Simmons, K.M. and Sutter D. (2011), Economic and Societal Impacts of Tornado, American Meteorological Society, Boston, U.S.A. https://doi.org/10.1007/978-1-935704-02-7.   DOI
6 Verma, S. and Selvam, R.P. (2020), "CFD to VorTECH pressure field comparison & roughness effect on flow", J. Struct. Eng., 146(9), 04020187-1. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002766.   DOI
7 Rotunno, R. (1979), "A study in tornado-like vortex dynamics", J. Atmos. Sci., 36(1), 140-155. https://doi.org/10.1175/1520-0469(1979)036<0140:ASITLV>2.0.CO;2.   DOI
8 Selvam, R.P. (1997), "Finite element modelling of flow around a circular cylinder using LES", J. Wind Eng. Ind. Aerod., 67-68, 129-139. https://doi.org/10.1016/S0167-6105(97)00068-8.   DOI
9 Sengupta, A., Haan, F.L., Sarkar, P.P. and Balaramudu, V. (2008), "Transient loads on buildings in microburst and tornado winds", J. Wind Eng. Ind. Aerod., 96(10-11), 2173-2187. https://doi.org/10.1016/j.jweia.2008.02.050.   DOI
10 Tang, Z., Zuo, D., James, D., Eguchi, Y. and Hattori, Y. (2018b), "Effects of aspect ratio on laboratory simulation of tornado-like vortices", Wind Struct., 27(2), 111-121. http://dx.doi.org/10.12989/was.2018.27.2.111.   DOI
11 Ward, N.B. (1972), "The exploration of certain features of tornado dynamics using a laboratory model", J Atmos. Sci., 29(6), 1194-1204. https://doi.org/10.1175/1520-0469(1972)029<1194:TEOCFO>2.0.CO;2.   DOI
12 Honerkamp, R., Yan, G. and Synder, J.C. (2020), "A review of the characteristics of tornadic wind fields through observations and simulations", J. Wind Eng. Ind. Aerod., 202, 104195. https://doi.org/10.1016/j.jweia.2020.104195.   DOI
13 Verma, S. and Selvam, R.P. (2021), "Effect of height of the tornado chamber on vortex touchdown", In: Rushi Kumar B., Sivaraj R., Prakash J. (eds) Advances in Fluid Dynamics. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4308-1_38.   DOI
14 Yuan, F., Yan, G., Honerkamp, R, Kakkattukuzhy, M.I, Zhao, M. and Mao, X. (2019), "Numerical simulation of laboratory tornado simulator that can produce translating tornado-like wind flow", J. Wind Eng. Ind. Aerod., 190, 200-217. https://doi.org/10.1016/j.jweia.2019.05.001.   DOI
15 Hirt, C.W. and Cook, J.L. (1972), "The calculation of three-dimensional flows around structures and over rough terrain", J. Comput. Phys., 10(2), 324-340. https://doi.org/10.1016/0021-9991(72)90070-8.   DOI
16 Kuai, L., Haan, F.L.J., Gallus, W.A.J. and Sarkar, P.P. (2008), "CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements", Wind Struct., 11(2), 75-96. https://doi.org/10.12989/WAS.2008.11.2.075.   DOI
17 Liu, Z. and Ishihara, T. (2015), "A study of tornado induced mean aerodynamic forces on a gable-roofed building by the large eddy simulations", J. Wind Eng. Ind. Aerod., 146, 39-50. https://doi.org/10.1016/j.jweia.2015.08.002.   DOI
18 Mishra, A.R., James, D.L. and Letchford, C.W. (2008), "Physical simulation of a single-celled tornado-like vortex, Part B: wind loading on a cubical model", J. Wind Eng. Ind. Aerod., 96(8-9), 1258-1273. https://doi.org/10.1016/j.jweia.2008.02.027.   DOI
19 Ishihara, T., Oh, S. and Tokuyama Y. (2011), "Numerical study on flow fields of tornado-like vortices using the LES turbulence model", J. Wind Eng. Ind. Aerod., 99(4), 239-248. https://doi.org/10.1016/j.jweia.2011.01.014.   DOI
20 Kikitsu H., Okuda Y., Kawai H. and Kanda J. (2012), "Experimental study on characteristics of tornado-induced wind force on a low-rise building", Proceedings of the 22nd National Symposium on Wind Engineering, 209-214. https://doi.org/10.14887/kazekosymp.22.0.209.0.   DOI
21 Changnon, S.A. (2009), "Tornado losses in the United States", Nat. Haz. Rev., 10(4), 145-150. https://doi.org/10.1061/(asce)1527-6988(2009)10:4(145)   DOI
22 Lewellen, D.C. and Lewellen, W.S. (2007), "Near-surface intensification of tornado vortices", J. Atmos. Sci., 64(7), 2176-2194. https://doi.org/10.1175/JAS3965.1.   DOI
23 Mayer, L.J. (2009), Development of a Large-Scale Simulator, Master Thesis, Texas Tech University, Lubbock, U.S.A.
24 Molloy, S.L. and Mihaltcheva, S. (2013), "1.01 - Extreme weather events". Editor(s): Roger A. Pielke, Climate Vulnerability, Academic Press, 3-16. https://doi.org/10.1016/B978-0-12-384703-4.00103-9.   DOI
25 Lewellen, W.S. and Lewellen, D.C., Sykes, R.I. (1997), "Largeeddy simulation of a tornado's interaction with the surface", J. Atmos. Sci., 54(5), 581-605. https://doi.org/10.1175/1520-0469(1997)054<0581:LESOAT>2.0.CO;2.   DOI
26 Cengel, Y.A. and Cimbala J.M. (2014), Fluid Mechanics: Fundamentals and Applications, McGraw Hill, New York, NY, U.S.A.
27 Church, C.R., Snow, J.T. and Agee, E.M. (1977), "Tornado vortex simulation at Purdue University", Bull. Amer. Meteor. Soc., 58(9), 900-909. https://doi.org/10.1175/1520-0477(1977)058<0900:TVSAPU>2.0.CO;2   DOI
28 Gairola, A. (2017), Generic Numerical Tornado Model for Common Interpretation of Existing Experimental Simulators, Master's thesis, University of Western Ontario, London, Ontario, Canada.
29 Gillmeier, S. (2019), An Investigation Concerning the Simulation of Tornado-Like Vortices", Ph.D. Dissertation, University of Birmingham, Birmingham, U.K.
30 Alrasheedi, N.H and Selvam, R.P. (2011), "Tornado forces on different building sizes using computer modeling", 2011 ECTC Proceedings, ASME Early Career Technical Conference, Hosted by ASME District E and University of Arkansas, Fayetteville.
31 Hangan, H. (2014), "The wind engineering energy and environment (WindEEE) dome at Western University, Canada", Wind Engineers, JAWE, 39(4), 350-351. https://doi.org/10.5359/jawe.39.350.   DOI
32 Ashton, R., Refan, M., Iungo, G.V. and Hangan, H. (2019), "Wandering corrections from PIV measurements of tornado-like vortices", J. Wind Eng. Ind. Aerod., 189, 163-172. https://doi.org/10.1016/j.jweia.2019.02.010.   DOI
33 Yuan, F., Yan, G., Honerkamp, R., H., Isaac, K.M. and Ruoqiang, F. (2016), "Effects of chamber shape on simulation of tornado-like flow in a laboratory", Wind engineering for natural hazards-modeling, simulation, and mitigation of windstorm impact on critical infrastructure, Reston. https://doi.org/10.1061/9780784415153.ch08.   DOI
34 Church, C.R., Snow, J.T., Baker, G.L. and Agee E.M. (1979), "Characteristics of tornado-like vortices as a function of swirl ratio: a laboratory investigation", J. Atmos. Sci., 36(9), 1755-1776. https://doi.org/10.1175/1520-0469(1979)036<1755:COTLVA>2.0.CO;2   DOI
35 Gairola, A. and Bitsuamlak, G. (2019), "Numerical tornado modeling for common interpretation of experimental simulators", J. Wind Eng. Ind. Aerod., 186, 32-48. https://doi.org/10.1016/j.jweia.2018.12.013.   DOI
36 Baker, C. and Sterling, M. (2019), "Are tornado vortex generators fit for purpose?" J. Wind Eng. Ind. Aerod., 190, 287-292. https://doi.org/10.1016/j.jweia.2019.05.011.   DOI
37 Matsui, M. and Tamura, Y. (2009), "Influence of swirl ratio and incident flow conditions on generation of tornado-like vortex", Proceedings of EACWE 5, Florence, Italy, July 19th-23rd. https://doi.org/10.1400/116522.   DOI
38 Tang, Z., Feng, C., Wu, L., Zuo, D. and James, D.L. (2018a), "Characteristics of tornado-like vortices simulated in a large scale ward type simulator", Bound. Lay. Meteorol., 166, 327-350. https://doi.org/10.1007/s10546-017-0305-7.   DOI
39 Harlow, F.H. and Stein L.R. (1974), "Structural analysis of tornado-like vortices", J. Atmos. Sci., 31(8), 2081-2098. https://doi.org/10.1175/1520-0469(1974)031<2081:SAOTLV>2.0.CO;2   DOI
40 Haan Jr. F.L, Balaramudu, V.K. and Sarkar, P.P. (2010), "Tornado-induced wind loads on a low-rise building", J. Struct. Eng., 136(1), 106-116. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000093.   DOI
41 Hu, H., Yang, Z., Sarkar, P. and Haan, F. (2011), "Characterization of the wind loads and flow fields around a gable-roof building model in tornado-like winds", Exp Fluids, 51, 835. https://doi.org/10.1007/s00348-011-1102-6.   DOI
42 Kashefizadeh, M.H, Verma, S. and Selvam, R.P. (2019), "Computer modelling of close-to-ground tornado wind-fields for different tornado widths", J. Wind Eng. Ind. Aerod., 191, 32-40. https://doi.org/10.1016/j.jweia.2019.05.008.   DOI
43 Gillmeier, S., Sterling, M. and Hemida, H. (2019), "Simulating tornado-like flows: The effect of the simulator's geometry", Meccanica, 54, 2385-2398. https://doi.org/10.1007/s11012-019-01082-4   DOI
44 Haan, F.L., Sarkar, P.P. and Gallus, W.A. (2008), "Design, construction and performance of a large tornado simulator for wind engineering applications", Eng. Struct., 30(4), 1146-1159. https://doi.org/10.1016/j.engstruct.2007.07.010.   DOI
45 Nasir, Z. and Bitsuamlak, G.T. (2016), "Computational modeling of tornadic load on a tall building", CSCE Annual Conference, London Convention Center, London, Ontario, Canada, June.