Browse > Article
http://dx.doi.org/10.12989/was.2021.33.1.103

Study on the damping mechanisms of a suspended particle damper attached to a wind turbine tower  

Ma, Chenzhi (College of Civil Engineering, Tongji University)
Lu, Zheng (College of Civil Engineering, Tongji University)
Wang, Dianchao (College of Civil Engineering, Tongji University)
Wang, Zixin (College of Civil Engineering, Tongji University)
Publication Information
Wind and Structures / v.33, no.1, 2021 , pp. 103-114 More about this Journal
Abstract
Intensive attention has been given to mitigating the dynamic responses of wind turbine towers (WTs) under wind and seismic excitations to ensure their safety and serviceability. This study details the damping mechanisms of a suspended particle damper (suspended PD) on the vibration control of a horizontal-axis WT. This damper combines the benefits of a tuned mass damper (TMD) and fixed PD, and can be effective without an external damping system. It therefore is a more practical solution for the vibration control of a WT. In this study, a finite element WT is built, and two damper systems with a TMD and suspended PD are modeled and compared. Ground motions and strong lateral winds are applied as external excitations to the operational and parked turbines, respectively. A full factorial study using a statistical method is conducted to determine the interaction effects of key parameters of the suspended PD. Results show that the damping effectiveness of a suspended PD is not sensitive to the external damping system under specific parameters, and it can be effective in detuned cases. Finally, a comparison between the optimal TMD and suspended PD on the vibration control of a WT is performed. The comparative results indicate that the performance of the suspended PD is considerably more robust than the TMD in wind-seismic excitations.
Keywords
vibration control; passive control; particle damper; tuned mass damper; wind turbine tower; parametric study;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Symans, M.D., Charney, F.A., Whittaker, A.S., Constantinou, M.C., Kircher, C.A., Johnson, M.W. and McNamara, R.J. (2008), "Energy dissipation systems for seismic applications: Current practice and recent developments", J. Struct. Eng., 134(1), 3-21. https://doi.org/10.1061/(Asce)0733-9445(2008)134:1(3).   DOI
2 Alkmim, M.H., Fabro, A.T. and de Morais, M.V.G. (2018), "Optimization of a tuned liquid column damper subject to an arbitrary stochastic wind", J. Braz Soc. Mech. Sci., 40(11). https://doi.org/10.1007/s40430-018-1471-3.   DOI
3 Bannerman, M.N., Kollmer, J.E., Sack, A., Heckel, M., Mueller, P. and Poschel, T. (2011), "Movers and shakers: granular damping in microgravity", Phys. Rev. E. Stat. Nonlin. Soft Matter. Phys., 84(1Pt1), 011301. https://doi.org/10.1103/PhysRevE.84.011301.   DOI
4 Chung, L.L., Lai, Y.A., Yang, C.S.W., Lien, K.H. and Wu, L.Y. (2013), "Semi-active tuned mass dampers with phase control", J Sound Vib. 332(15), 3610-3625. https://doi.org/10.1016/j.jsv.2013.02.008.   DOI
5 Dai, K., Mao, Z., Zhao, Z., Wang, Y., Meng, J. and Zhao, C.J.A.E.S. (2018), "Shaking table test study on seismic responses of a wind turbine under ground motions with different spectral characteristics", Advan. Eng. Sci.. 50(03), 125-133. https://doi.org/10.15961/j.jsuese.201800369.   DOI
6 Gattulli, V., Di Fabio, F. and Luongo, A. (2004), "Nonlinear tuned mass damper for self-excited oscillations", Wind Struct. 7(4), 251-264. https://doi.org/10.12989/was.2004.7.4.251.   DOI
7 GB50009-2012 (2012), Load Code for the Design of Building Structures, China National Standard (CNS); Haidian District, Beijing, China.
8 Papalou, A. and Masri, S.F. (1996b), "Response of impact dampers with granular materials under random excitation", Earthq. Eng. Struct. Dyn., 25(3), 253-267. https://doi.org/10.1002/(SICI)10969845(199603)25:3<253::AID-EQE553>3.0.CO;2-4.   DOI
9 Haskett, T., Breukelman, B., Robinson, J. and Kottelenberg, J. (2003), Tuned-mass Damper under Excessive Structural Excitation, Guelph, Ontario, Canada N1K 1B8.
10 Papalou, A. and Masri, S.F. (1998), "An experimental investigation of particle dampers under harmonic excitation", J. Vib. Control, 4(4), 361-379. https://doi.org/10.1177/107754639800400402.   DOI
11 He, J., Jin, X., Xie, S.Y., Cao, L., Lin, Y.F. and Wang, N. (2019), "Multi-body dynamics modeling and TMD optimization based on the improved AFSA for floating wind turbines", Renew. Energ. 141, 305-321. https://doi.org/10.1016/j.renene.2019.04.005.   DOI
12 Liu, W., Tomlinson, G.R. and Rongong, J.A. (2005), "The dynamic characterisation of disk geometry particle dampers", J. Sound Vib., 280(3-5), 849-861. https://doi.org/10.1016/j.jsv.2003.12.047.   DOI
13 IEC61400-1 (2005), WindTurbines-Part 1: Design requirements, International Electrotechnical Commission; Geneva, Switzerland.
14 Jonkman, J. and Jonkman, B. (2016), "NWTC information portal (FAST v8)", last modified 23-September-2015.
15 Lalonde, E.R., Dai, K.S., Bitsuamlak, G., Lu, W.S. and Zhao, Z. (2020), "Comparison of semi-active and passive tuned mass damper systems for vibration control of a wind turbine", Wind Struct., 30(6), 663-678. https://doi.org/10.12989/was.2020.30.6.663.   DOI
16 Valamanesh, V. and Myers, A.T. (2014), "Aerodynamic damping and seismic response of horizontal axis wind turbine towers", J. Struct. Eng., 140(11), 04014090. https://doi.org/10.1061/(Asce)St.1943-541x.0001018.   DOI
17 Leung, A.Y.T., Zhang, H.J., Cheng, C.C. and Lee, Y.Y. (2008), "Particle swarm optimization of TMD by nonstationary base excitation during earthquake", Earthq. Eng. Struct. Dyn., 37(9), 1223-1246. https://doi.org/10.1002/eqe.811.   DOI
18 Sack, A., Heckel, M., Kollmer, J.E., Zimber, F. and Poschel, T. (2013), "Energy dissipation in driven granular matter in the absence of gravity", Phys. Rev. Lett., 111(1), 018001. https://doi.org/10.1103/PhysRevLett.111.018001.   DOI
19 Shi, W.X., Wang, L.K., Lu, Z. and Wang, H.T. (2019), "Experimental and numerical study on adaptive-passive variable mass tuned mass damper", J. Sound Vib., 452 97-111. https://doi.org/10.1016/j.jsv.2019.04.008.   DOI
20 Yang, J., He, E.M. and Hu, Y.Q. (2019), "Dynamic modeling and vibration suppression for an offshore wind turbine with a tuned mass damper in floating platform", Appl. Ocean Res., 83 21-29. https://doi.org/10.1016/j.apor.2018.08.021.   DOI
21 Zhao, Z., Zhang, R. and Lu, Z. (2019b), "A particle inerter system for structural seismic response mitigation", J. Franklin Inst., 356(14), 7669-7688. https://doi.org/10.1016/j.jfranklin.2019.02.001.   DOI
22 Lu, X.L., Zhang, Q., Weng, D.G., Zhou, Z.G., Wang, S.S., Mahin, S.A., Ding, S.W. and Qian, F. (2017a), "Improving performance of a super tall building using a new eddy-current tuned mass damper", Struct Control Hlth. 24(3). https://doi.org/10.1002/stc.1882.   DOI
23 Malcolm, D. and Hansen, A. (2006), WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised), National Renewable Energy Lab.(NREL), Golden, CO (United States).
24 Lu, Z., Chen, X.Y., Zhang, D.C. and Dai, K.S. (2017b), "Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation", Earthq. Eng. Struct. Dyn., 46(5), 697-714. https://doi.org/10.1002/eqe.2826.   DOI
25 Lu, Z., Lu, X.L. and Masri, S.F. (2010), "Studies of the performance of particle dampers under dynamic loads", J. Sound Vib., 329(26), 5415-5433. https://doi.org/10.1016/j.jsv.2010.06.027.   DOI
26 Lu, Z., Wang, D.C., Masri, S.F. and Lu, X.L. (2016), "An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers", Smart Struct. Syst., 18(1), 93-115. https://doi.org/10.12989/sss.2016.18.1.093.   DOI
27 Mao, K.M., Wang, M.Y., Xu, Z.W. and Chen, T.N. (2004), "Simulation and characterization of particle damping in transient vibrations", J. Vib Acoust., 126(2), 202-211. https://doi.org/10.1115/1.1687401.   DOI
28 Meng, J.Y., Dai, K.S., Zhao, Z., Mao, Z.X., Camara, A., Zhang, S.H. and Mei, Z. (2020), "Study on the aerodynamic damping for the seismic analysis of wind turbines in operation", Renew. Energ. 159, 1224-1242. https://doi.org/10.1016/j.renene.2020.05.181.   DOI
29 Ghorbani-Tanha, A.K., Noorzad, A. and Rahimian, M. (2009), "Mitigation of Wind-Induced Motion of Milad Tower by Tuned Mass Damper", Struct. Des Tall Spec., 18(4), 371-385. https://doi.org/10.1002/tal.421.   DOI
30 Murtagh, P.J., Ghosh, A., Basu, B. and Broderick, B.M. (2008), "Passive-control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence", Wind Energy. 11(4), 305-317. https://doi.org/10.1002/we.249.   DOI
31 Lu, Z., Li, K., Ouyang, Y.T. and Shan, J.Z. (2018a), "Performance-based optimal design of tuned impact damper for seismically excited nonlinear building", Eng. Struct., 160, 314-327. https://doi.org/10.1016/j.engstruct.2018.01.042.   DOI
32 Lu, Z., Wang, Z.X., Masri, S.F. and Lu, X.L. (2018b), "Particle impact dampers: Past, present, and future", Struct. Control Hlth., 25(1). https://doi.org/10.1002/stc.2058.   DOI
33 Masri, S. and Ibrahim, A. (1972), "Stochastic excitation of a simple system with impact damper", Earthq. Eng. Struct. Dyn., 1(4), 337-346. https://doi.org/10.1002/eqe.4290010404.   DOI
34 Papalou, A. and Masri, S.F. (1996a), "Performance of particle dampers under random excitation", J. Vib. Acoust., 118(4), 614-621. https://doi.org/10.1115/1.2888343.   DOI
35 Rezaee, M. and Aly, A.M. (2016), "Vibration control in wind turbines for performance enhancement: A comparative study", Wind Struct., 22(1), 107-131. https://doi.org/10.12989/was.2016.22.1.107.   DOI
36 Sanchez, M. and Carlevaro, C.M. (2013), "Nonlinear dynamic analysis of an optimal particle damper", J. Sound Vib., 332(8), 2070-2080. https://doi.org/10.1016/j.jsv.2012.09.042.   DOI
37 Sanchez, M., Rosenthal, G. and Pugnaloni, L.A. (2012), "Universal response of optimal granular damping devices", J. Sound Vib., 331(20), 4389-4394. https://doi.org/10.1016/j.jsv.2012.05.001.   DOI
38 Box, G.E., Hunter, W.H. and Hunter, S. (1978), Statistics for Experimenters, John Wiley and sons New York
39 De Angelis, M., Perno, S. and Reggio, A. (2012), "Dynamic response and optimal design of structures with large mass ratio TMD", Earthq. Eng. Struct. Dyn., 41(1), 41-60. https://doi.org/10.1002/eqe.1117.   DOI
40 Si, Y.L., Karimi, H.R. and Gao, H.J. (2013), "Modeling and parameter analysis of the OC3-Hywind floating wind turbine with a tuned mass damper in nacelle", J. Appl. Math., https://doi.org/10.1155/2013/679071.   DOI
41 Wong, C.X., Daniel, M.C. and Rongong, J.A. (2009), "Energy dissipation prediction of particle dampers", J. Sound Vib., 319(1-2), 91-118. https://doi.org/10.1016/j.jsv.2008.06.027.   DOI
42 Yan, W.M., Xu, W.B., Wang, J. and Chen, Y.J. (2014), "Experimental research on the fffects of a tuned particle damper on a viaduct system under seismic loads", J. Bridge Eng., 19(3). https://doi.org/10.1061/(Asce)Be.1943-5592.0000525.   DOI
43 Zhao, B., Gao, H., Wang, Z.X. and Lu, Z. (2018), "Shaking table test on vibration control effects of a monopile offshore wind turbine with a tuned mass damper", Wind Energy. 21(12), 1309-1328. https://doi.org/10.1002/we.2256.   DOI
44 Zhao, Z., Dai, K.S., Lalond, E.R., Meng, J.Y., Li, B.W., Ding, Z.B. and Bitsuamlak, G. (2019a), "Studies on application of scissor-jack braced viscous damper system in wind turbines under seismic and wind loads", Eng. Struct., 196. https://doi.org/10.1016/j.engstruct.2019.109294.   DOI
45 Zuo, H.R., Bi, K.M. and Hao, H. (2017), "Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards", Eng. Struct., 141, 303-315. https://doi.org/10.1016/j.engstruct.2017.03.006.   DOI