Browse > Article
http://dx.doi.org/10.12989/was.2020.31.6.561

Nonparametric modeling of self-excited forces based on relations between flutter derivatives  

Papinutti, Mitja (Faculty of Civil and Geodetic Engineering, University of Ljubljana)
Cetina, Matjaz (Faculty of Civil and Geodetic Engineering, University of Ljubljana)
Brank, Bostjan (Faculty of Civil and Geodetic Engineering, University of Ljubljana)
Petersen, Oyvind W. (Department of Structural Engineering, Faculty of Engineering, Norwegian University of Science and Technology)
Oiseth, Ole (Department of Structural Engineering, Faculty of Engineering, Norwegian University of Science and Technology)
Publication Information
Wind and Structures / v.31, no.6, 2020 , pp. 561-573 More about this Journal
Abstract
Unsteady self-excited forces are commonly represented by parametric models such as rational functions. However, this requires complex multiparametric nonlinear fitting, which can be a challenging task that requires know-how. This paper explores the alternative nonparametric modeling of unsteady self-excited forces based on relations between flutter derivatives. By exploiting the properties of the transfer function of linear causal systems, we show that damping and stiffness aerodynamic derivatives are related by the Hilbert transform. This property is utilized to develop exact simplified expressions, where it is only necessary to consider the frequency dependency of either the aeroelastic damping or stiffness terms but not both simultaneously. This approach is useful if the experimental data on aerodynamic derivatives that are related to the damping are deemed more accurate than the data that are related to the stiffness or vice versa. The proposed numerical models are evaluated with numerical examples and with data from wind tunnel experiments. The presented method can evaluate any continuous fitted table of interpolation functions of various types, which are independently fitted to aeroelastic damping and stiffness terms. The results demonstrate that the proposed methodology performs well. The relations between the flutter derivatives can be used to enhance the understanding of experimental modeling of aerodynamic self-excited forces for bridge decks.
Keywords
aerodynamic stability/instability; bridge aerodynamics; flutter, time-domain methods; wind loads;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Borri, C., Costa, C. and Zahlten, W. (2002), "Non-stationary flow forces for the numerical simulation of aeroelastic instability of bridge decks", Comput. Struct., 80, 1071-1079. https://doi.org/10.1016/S0045-7949(02)00066-4   DOI
2 Brownjohn, J.M.W. and Choi, C.C. (2001), "Wind tunnel section model study of aeroelastic performance for Ting Kau Bridge Deck", Wind Struct., 4(5), 367-382. http://dx.doi.org/10.12989/was.2001.4.5.367.   DOI
3 Bucher, C.G. and Lin, Y.K. (1988), "Stochastic stability of bridges considering coupled modes", Engineering Mechanics - ASCE, 114, 2055-2071. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:12(2055).   DOI
4 Caracoglia, L. and Jones, N.P. (2003), "Time domain vs. frequency domain characterization of aeroelastic force for bridge deck sections", J. Wind Eng. Ind. Aerod., 91, 371-402. https://doi.org/10.1016/S0167-6105(02)00399-9.   DOI
5 Chen, X. and Kareem, A. (2001), "Nonlinear response analysis of long-span bridges under turbulent winds", J. Wind Eng. Ind. Aerod., 89, 1335-1350. https://doi.org/10.1016/S0167-6105(01)00147-7.   DOI
6 Chen, X. and Kareem, A. (2002), "Advances in modeling of aerodynamic forces on bridge decks", J. Eng. Mec., 128(11), 1193-1205. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1193).   DOI
7 Chen, X., Matsumoto, M. and Kareem, A. (2000), "Aerodynamic coupling effects on flutter and buffeting of Bridges", J. Eng. Mech., 17(2), 201-213. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(17).   DOI
8 Chen, X.Z., Matsumoto, M. and Kareem, A. (2000), "Time domain flutter and buffeting response analysis of Bridges", J. Eng. Mech. - ASCE, 126, 7-16. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(7)   DOI
9 Chowdhury, A.G. and Partha P.S. (2004), "Identification of eighteen flutter derivatives of an airfoil and a bridge deck", Wind Struct., 7(3), 187-202. http://dx.doi.org/10.12989/was.2004.7.3.187.   DOI
10 Cummins, W.E. (1962), "The impulse response function and ship motions ", Schiffstechnik, 9, 101-109.
11 Diana, G., Resta, F. and Rocchi, D. (2008), "A new numerical approach to reproduce bridge aerodynamic non- linearities in time domain", J. Wind Eng. Ind. Aerod., 96, 1871-1884. https://doi.org/10.1016/j.jweia.2008.02.052.   DOI
12 Hammersley, J. (2013), Monte carlo methods. Springer Science & Business Media.
13 Helgedagsrud, A.T., Bazilevs, Y., Mathisen, M.K. and Oiseth, A.O. (2019), "ALE-VMS methods for wind-resistant design of longspan bridges", J. Wind Eng. Ind. Aerod., 191. https://doi.org/10.1016/j.jweia.2019.06.001.   DOI
14 Helgedagsrud, A.T., Bazilevs, Y., Mathisen, M.K. and Oiseth, A.O. (2019), "Computational and experimental investigation of free vibration and flutter of bridge decks", Comput. Mech., 63, 121-136. http://dx.doi.org/10.1007/s00466-018-1587-4.   DOI
15 Kavrakov, I. and Morgenthal, G. (2017), "A Comparative assessment of aerodynamic models for buffeting and flutter of long-span bridges", Engineering, 3, 823-838 https://doi.org/10.1016/j.eng.2017.11.008.   DOI
16 Helgedagsrud, T.A., Akkerman, I., Bazilevs, Y., Mathisen, M.K. and Oiseth, A.O. (2019), "Isogeometric modeling and experimental investigation of moving-domain bridge aerodynamics", Eng. Mech., 5, 145. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001601.   DOI
17 Helgedagsrud, T.A., Bazilevs, Y., Korobenko, A., Mathisen, K.M. and Oiseth, A.O. (2018), "Using ALE-VMS to compute aerodynamic derivatives of bridge sections", Comput. Fluids, 1, 1-13. https://doi.org/10.1016/j.compfluid.2018.04.037.   DOI
18 Holmes, J. (2007), Wind Loading on Structures, Taylor&Francis.
19 Kavrakov, I., Legatiuk, D., Gürlebeck, K. and Morgenthal, G. (2019), "A categorical perspective towards aerodynamic models for aeroelastic analyses of bridge decks", Royal Soc. Open Sci., 6, 181848. https://doi.org/10.1098/rsos.181848.   DOI
20 King, F.W. (2009), "Hilbert Transforms", Encyclopedia Mathem. Appl., Cambridge, 124.
21 Krenk, S. (1996), "Wind field coherence and dynamic wind forces", IUTAM Symposium on 533 Advances in Nonlinear Stochastic Mechanics: Proceedings of the IUTAM Symposium held in Trondheim, 269-278. https://doi.org/10.1007/978-94-009-0321-0_25.   DOI
22 Masaru, M. (1996), "Aerodynamic damping of prism", J. Wind Eng. Ind. Aerod., 59, 159-175. https://doi.org/10.1016/0167-6105(96)00005-0.   DOI
23 Metropolis, N. and Ulam, S. (1949), "The Monte Carlo Method", J. Amer. Statistic. Assoc., 44(247), 335-341.   DOI
24 Papinutti, M., Aas-Jakobsen, K., Kaasa, L.H., Bruer, A., Marley, M.H., Veie, J. and Holtberget, S.H. (2017), "Coupled wind and wave load analyses of multi-span suspension bridge supported by floating foundations", IABSE Symposium, Vancouver.
25 Mishra, S.S., Kumar, K. and Krishna, P. (2008), "Multimode flutter of long-span cable-stayed bridge based on 18 experimental aeroelastic derivatives", Wind Eng. Ind. Aerod., 96, 83-102. https://doi.org/10.1016/j.jweia.2007.03.006.   DOI
26 Oiseth, O., Ronnquist, A. and Sigbjornsson, R. (2010), "Simplified prediction of wind-induced response and stability limit of slender long-spansuspension bridges, based on modified quasi-steady theory: A case study", J. Wind Eng. Ind. Aerod., 98, 730-741. https://doi.org/10.1016/j.jweia.2010.06.009.   DOI
27 Oiseth, O., Ronnquist, A. and Sigbjornsson, R. (2011), "Time domain modeling of self-excited aerodynamic forces for cablesupported bridges: A comparative study", Comput. Struct., 89, 1306-1322. https://doi.org/10.1016/j.compstruc.2011.03.017.   DOI
28 Papinutti, M., Sello, J., Bruer, A., Marley, M.H., Veie, J. and Holtberget, S.H. (2016), "Comparison of alternative floater concepts for a 2-span suspension bridge supported by a tension Leg Platform", IABSE Congress Stockholm, Stockholm.
29 Papinutti, M., Stajnko, J.K., Jecl, R., Strukelj, A., Zadravec, M. and Jurado, J.A. (2013), "Assessment of flutter speed on the long span bridges", The 7th Subrata Chakrabarti International Conference on Fluid Structure Interaction, Wessex Institute, London.
30 Perez, T. and Fossen, T.I. (2008), "Time-vs. frequency-domain Identification of parametric radiation force models for marine structures at zero speed", Modeling, Identification Control, 29(1), 1-19. https://doi.org/10.4173/mic.2008.1.1.   DOI
31 R.L. Bisplinghoff and Ashley, H. (1962), Principles of Aeroelasticity, CRC Press.
32 Scanlan, R.H. (1978), "The action of flexible bridges under wind, II: Buffeting theory", J. Sound Vib., 2, 60. https://doi.org/10.1016/S0022-460X(78)80029-7.   DOI
33 Salvatori, L. (2007), Assesment and Migitation of Wind Risk of Suspended-Span Bridge, Civil Eng. Environ. Sci., https://doi.org/10.24355/dbbs.084-200805160200-8.   DOI
34 Salvatori, L. and Borri, C. (2007), "Frequency-and time-domain methods for the numerical modeling of full-bridge aeroelasticity", Comput. Struct., 85, 675-687. https://doi.org/10.1016/j.compstruc.2007.01.023.   DOI
35 Sauder, H.S. and Sarkar, P.P. (2017), "A 3-DOF forced vibration system for time-domain aeroelastic parameter identification", Wind Struct., 24(5), 481-500. https://doi.org/10.12989/was.2017.24.5.481.   DOI
36 Scanlan, R.H. (1993), "Problematics in formulation of wind-force models for bridge decks", J. Eng. Mech., 119(7), 1353-1375. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:7(1353).   DOI
37 Scanlan, R.H. and Tomko, J.J. (1971), "Airfoil and bridges deck flutter derivatives", J. Eng. Mech. Div. (ASCE), 97, 1717-1737.   DOI
38 Scanlan, R.H., Beliveau, J.G. and Budlong, K.S. (1974), "Indicial aerodynamic functions for bridge decks", J. Eng. Mech. Div., 657-672.
39 Scanlan, R.H., Joes, N.P. and Singh, L. (1997), "Inter-relations among flutter derivatives", J. Wind Eng. Ind. Aerod., 69-71, 829-837. https://doi.org/10.1016/S0167-6105(97)00209-2.   DOI
40 Siedziako, B., Oiseth, O. and Ronnquist, A. (2017), "An enhanced forced vibration rig for wind tunnel testing of bridge deck section models", J. Wind Eng. Ind. Aerod., 164, 152-163. https://doi.org/10.1016/j.jweia.2017.02.011.   DOI
41 Wun, T. and Kareem, A. (2014), "Simulation of nonlinear bridge aerodynamics: A sparse third-order Volterra model", J. Sound Vib., 333, 178-188. https://doi.org/10.1016/j.jsv.2013.09.003.   DOI
42 Aas-Jakobsen, K. and Strommen, E. (2001), "Time domain buffeting response calculation of slander structures", J. Wind Eng. Ind. Aerod., 89(5), 341-364. https://doi.org/10.1016/S0167-6105(00)00070-2.   DOI
43 Bartosz, S. and Oiseth, O. (2018), "Modeling of self-excited forces during multimode flutter: an experimental study", Wind Struct., 27(5), 293-309. https://doi.org/10.12989/was.2018.27.5.293.   DOI
44 Stampler, J., Sello, J., Papinutti, M., Bruer, A., Marley, M.H., Veie, J. and Holtberget, S.H. (2015), Prediction of Wave and Wind induced Dynamic Response in Time Domain using RM Bridge, IABSE Conference, Geneva.
45 Tubino, F. (2005), "Relationships among aerodynamic admittance functions, flutter derivatives and static coefficients for long-span bridges", J. Wind Eng. Ind. Aerod., 93, 929-950. https://doi.org/10.1016/j.jweia.2005.09.002.   DOI
46 Wun, T. and Kareem, A. (2011), "Modeling hysteretic nonlinear behavior of bridge aerodynamics via cellular automata nested neural network", J. Wind Eng. Ind. Aerod., 99, 378-388. https://doi.org/10.1016/j.jweia.2010.12.011.   DOI
47 Xu, Y.L. (2013), Wind Effects on Cable-Supported Bridges, John Wiley & Sons. https://doi.org/10.1002/9781118188293.
48 Xiong Jiang, W., Jian, S. and Yong Hui, M. (2011), "Reexamination of the inter-relationship among flutter derivatives of bridge decks", Geotech. Spec. Public. ASCE, 214. https://doi.org/10.1061/47625(404)10
49 Xu, F., Ying, X. and Zhang, Z. (2016), "Insight into coupled forced vibration method to identify bridge flutter derivatives.", Wind Struct., 22(3), 273-290. https://doi.org/10.12989/was.2016.22.3.273.   DOI
50 Xu, X. (2009), "Parametric studies on relationships between flutter derivatives of slender bridge II", Appl. Mathem. Mech., 3(30), 335-341. https://doi.org/10.1007/s10483-009-0307-x.   DOI
51 Yagi, T. (1997), "Wind-induced instabilities of structures", Kungl. tekniska hogskolan, Institutionen for byggkonstruktion, Stockholm.
52 Xinzhong, C. and Ahsan, K. (2004), "Efficiency of the implied approximation in the identification of flutter derivatives", J. Struct. Eng., 130, 12. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(2070).   DOI