Browse > Article
http://dx.doi.org/10.12989/sem.2022.81.1.029

Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam  

Kaur, Iqbal (Government College for Girls)
Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University)
Singh, Kulvinder (UIET, Kurukshetra University)
Publication Information
Structural Engineering and Mechanics / v.81, no.1, 2022 , pp. 29-37 More about this Journal
Abstract
The present paper deals with the application of one dimensional piezoelectric materials in particular piezo-thermoelastic nanobeam. The generalized piezo-thermo-elastic theory with two temperature and Euler Bernoulli theory with small scale effects using nonlocal Eringen's theory have been used to form the mathematical model. The ends of nanobeam are considered to be simply supported and at a constant temperature. The mathematical model so formed is solved to obtain the non-dimensional expressions for lateral deflection, electric potential, thermal moment, thermoelastic damping and frequency shift. Effect of frequency and nonlocal parameter on the lateral deflection, electric potential, thermal moment with generalized piezothermoelastic theory are represented graphically using the MATLAB software. Comparisons are made with the different theories of thermoelasticity.
Keywords
generalized piezothermoelastic theory; nanobeam; nonlocal; piezo-thermo-elastic; time harmonic frequency; transversely Isotropic;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bhatti, M.M., Elelamy, A.F., Sait, S.M. and Ellahi, R. (2020a), "Hydrodynamics interactions of metachronal waves on particulate-liquid motion through a ciliated annulus: application of bio-engineering in blood clotting and endoscopy", Symmetry, 12(4), 532-547. https://doi.org/10.3390/sym12040532.   DOI
2 Marin, M. (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure", Int. J. Eng. Sci., 32(8), 1229-1240. https://doi.org/10.1016/0020-7225(94)90034-5.   DOI
3 Marin, M. and O chsner, A. (2018), "An initial boundary value problem for modeling a piezoelectric dipolar body", Continuum Mech. Thermodyn., 30, 267-278. https://doi.org/10.1007/s00161-017-0599-1.   DOI
4 Othman, M. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under G-N theory", Result. Phys., 7, 3863-3872.   DOI
5 Sharma, K. and Marin, M. (2014), "Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids", Anal. Univ. "Ovidius" Constanta-Seria Matematica, 22(2), 151-176. https://doi.org/10.2478/auom-2014-0040.   DOI
6 Vahdat, A.S., Rezazadeh, G. and Ahmadi, G. (2012), "Thermoelastic damping in a micro-beam resonator tunable with piezoelectric layers", Acta Mechanica Solida Sinica, 25(1), 73-81. https://doi.org/10.1016/S0894-9166(12)60008-1.   DOI
7 Wang, Y.Z., Cui, H.T., Li, F.M. and Kishimoto, K. (2011), "Effects of viscous fluid on wave propagation in carbon nanotubes", Phys. Lett. A, 375, 2448-2451. https://doi.org/10.1016/j.physleta.2011.05.016.   DOI
8 Marin, M. (2010a), "A partition of energy in thermoelasticity of microstretch bodies", Nonlin. Anal.: Real World Appl., 11(4), 2436-2447. https://doi.org/10.1016/j.nonrwa.2009.07.014.   DOI
9 Marin, M. (2010b), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045.   DOI
10 Othman, M.I., Atwa, S.Y., Hasona, W.M. and Ahmed, E.A. (2015), "Propagation of plane waves in generalized piezothermoelastic medium: Comparison of different theories", Int. J. Innov. Res. Sci., Eng. Technol., 4(4), 2292-2300.
11 Borjalilou, V., Asghari, M. and Taati, E. (2020), "Thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging effect", J. Vib. Control, 26(11-12), 1042-1053. https://doi.org/10.1177/1077546319891334.   DOI
12 Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M. (2019), "Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel", Heat Transf. Res., 50(16), 1539-1560. https://doi.org/10.1615/heattransres.2019025622.   DOI
13 Wang, Y.Z. (2017), "Nonlinear internal resonance of double-walled nanobeams under parametric excitation by nonlocal continuum theory", Appl. Math. Model., 48, 621-634. https://doi.org/10.1016/j.apm.2017.04.018.   DOI
14 Mahmoud, S.R., Marin, M. and Al-Basyouni, K.S. (2015), "Effect of the initial stress and rotation on free vibrations in transversely isotropic human long dry bone", Versita, 23(1), 171-184. https://doi.org/10.1515/auom-2015-0011.   DOI
15 Lazar, M. and Agiasofitou, E. (2011), "Screw dislocation in nonlocal anisotropic elasticity", Int. J. Eng. Sci., 49(12), 1404-1414. https://doi.org/10.1016/j.ijengsci.2011.02.011.   DOI
16 Wang, Y.Z., Li, F.M. and Kishimoto, K. (2012), "Effects of axial load and elastic matrix on flexural wave propagation in nanotube with nonlocal Timoshenko beam model", ASME J. Vib. Acoust., 134(3), 1-7. https://doi.org/10.1115/1.4005832.   DOI
17 Aldawody, D.A., Hendy, M.H. and Ezzat, M.A. (2018), "On dual-phase-lag magneto-thermo-viscoelasticity theory with memory-dependent derivative", Microsyst. Technol., 25(8), 2915-2929. https://doi.org/10.1007/s00542-018-4194-6.   DOI
18 Bhatti, M.M. and Lu, D.Q. (2019), "Analytical study of the head-on collision process between hydroelastic solitary waves in the presence of a uniform current", Symmetry, 11(3), 1-29. https://doi.org/10.3390/sym11030333.   DOI
19 Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M. and Ijaz, N. (2019a), "Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties", Modern Phys. Lett. B, 35(35), 1950439. https://doi.org/10.1142/S0217984919504396.   DOI
20 Bhatti, M.M., Yousif, M.A., Mishra, S.R. and Shahid, A. (2019b), "Simultaneous influence of thermo-diffusion and diffusion-thermo on non-Newtonian hyperbolic tangent magnetised nanofluid with Hall current through a nonlinear stretching surface", Pramana, 93(6), 88. https://doi.org/10.1007/s12043-019-1850-z.   DOI
21 Eom, C.B. and Trolier-McKinstry, S. (2012), "Thin-film piezoelectric MEMS", Mater. Res. Soc. Bull., 37(11), 1007-1017. https://doi.org/10.1557/mrs.2012.273.   DOI
22 Ezzat, M.A., Karamany, A.S. and El-Bary, A. (2017), "Thermoelectric viscoelastic materials with memory-dependent derivative", Smart Struct. Syst., 19(5), 539-551. https://doi.org/10.12989/sss.2017.19.5.539.   DOI
23 Eringen, A.C. (1966a), "Linear theory of micropolar elasticity", J. Math. Mech., 15(6), 909-923.
24 Eringen, A.C. (1966c), "Theory of micropolar fluids", J. Math. Mech., 16(1), 1-18. https://doi.org/10.1512/iumj.1967.16.16001.   DOI
25 Abd-Alla, A.E.N.N. and Abbas, I. (2011), "A problem of generalized magnetothermoelasticity for an infinitely long, perfectly conducting cylinder", J. Therm. Stress., 25(11), 1009-1025. https://doi.org/10.1080/01495730290074612.   DOI
26 Kaur, I. and Singh, K. (2021a), "Thermoelastic damping in a thin circular transversely isotropic Kirchhoff-Love plate due to GN theory of type III", Arch. Appl. Mech., 91(5), 2143-2157. https://doi.org/10.1007/s00419-020-01874-1.   DOI
27 Kaur, I., Lata, P. and Singh, K. (2020b), "Reflection of plane harmonic wave in rotating media with fractional order heat transfer", Adv. Mater. Res., 9(4), 289-309. https://doi.org/10.12989/amr.2020.9.4.289.   DOI
28 Liang, X. and Shen, S. (2011), "Effect of electrostatic force on a piezoelectric nanobeam", Smart Mater. Struct., 21(1), 015001. https://doi.org/10.1088/0964-1726/21/1/015001.   DOI
29 Zenkour, A.M. (2018), "Refined two-temperature multi-phase-lags theory for thermomechanical response of microbeams using the modified couple stress analysis", Acta Mechanica, 229(9), 3671-3692. https://doi.org/10.1007/s00707-018-2172-9.   DOI
30 Eringen, A.C. (1966b), "A unified theory of thermomechanical materials", Int. J. Eng. Sci., 4(2), 179-202. https://doi.org/10.1016/0020-7225(66)90022-X.   DOI
31 Hamidi, B.A., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2020), "Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green-Naghdi via nonlocal elasticity with surface energy effects", Eur. Phys. J. Plus, 135, 1-20. https://doi.org/10.1140/epjp/s13360-019-00037-8.   DOI
32 Kaur, I., Lata, P. and Singh, K. (2020a), "Reflection and refraction of plane wave in piezo-thermoelastic diffusive half spaces with three phase lag memory dependent derivative and two-temperature", Wave. Rand. Complex Media, 1-34. https://doi.org/10.1080/17455030.2020.1856451.   DOI
33 Kaur, I., Singh, K. and Ghita, G.M. (2021), "New analytical method for dynamic response of thermoelastic damping in simply supported generalized piezothermoelastic nanobeam", ZAMM-J. Appl. Math. Mech., 101(10), 1-13. https://doi.org/10.1002/zamm.202100108.   DOI
34 Rao, S. (2007), Vibration of Continuous Systems, John Wiley & Sons, New Jersey.
35 Kaur, I. and Singh, K. (2021b), "Effect of memory dependent derivative and variable thermal conductivity in cantilever nano-Beam with forced transverse vibrations", Force. Mech., 5, 100043. https://doi.org/10.1016/j.finmec.2021.100043.   DOI
36 Li, P., Ge, X., Yang, L. and Fang, Y. (2020), "Thermoelastic damping in nanobeam resonators based on effective nonlocal stress model", Proceedings of the 6th International Conference on Mechanical Engineering and Automation Science (ICMEAS), Moscow, October.
37 Lesan, D. (1987), "Plane strain problems in piezoelectricity", Int. J. Eng. Sci., 25(11-12), 1511-1523. https://doi.org/10.1016/0020-7225(87)90029-2.   DOI
38 Li, D. and He, T. (2018), "Investigation of generalized piezoelectric-thermoelastic problem with nonlocal effect and temperature-dependent properties", Heliyon, 4(10), E00860. https://doi.org/10.1016/j.heliyon.2018.e00860.   DOI
39 Zhang, L., Arain, M.B., Bhatti, M.M., Zeeshan, A. and Hal-Sulami, H. (2020), "Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids", Appl. Math. Mech., 41(4), 637-654. https://doi.org/10.1007/s10483-020-2599-7.   DOI
40 Youssef, H.M. (2006), "Theory of two-temperature-generalized thermoelasticity", IMA J. Appl. Math., 71(3), 383-390. https://doi.org/10.1093/imamat/hxh101.   DOI
41 Sadek, I. and Abukhaled, M. (2013), "Optimal control of thermoelastic beam vibrations by piezoelectric actuation", J. Control Theor. Appl., 11, 463-467. https://doi.org/10.1007/s11768-013-1204-1.   DOI
42 Vlase, S., Nastac, C., Marin, M. and Mihalcica, M. (2017), "A method for the study of the vibration of mechanical bars systems with symmetries", Acta Technica Napocensis-Ser.: Appl. Math. Mech. Eng., 60(4), 539-544.