Free vibration analysis of thin rectangular plates with two adjacent edges rotationally-restrained and the others free using finite Fourier integral transform method |
Zhang, Jinghui
(Key Laboratory of Green Construction and Intelligent Maintenance for Civil Engineering of Hebei Province, Yanshan University)
Lu, Jiale (Faculty of Infrastructure Engineering, Dalian University of Technology) Ullah, Salamat (Department of Civil Engineering, Abasyn University) Gao, Yuanyuan (Key Laboratory of Green Construction and Intelligent Maintenance for Civil Engineering of Hebei Province, Yanshan University) Zhao, Dahai (Key Laboratory of Green Construction and Intelligent Maintenance for Civil Engineering of Hebei Province, Yanshan University) Jamal, Arshad (Department of Civil and Envirnmental Engineering, King Fahd University of Petroleum and Minerals) Civalek, Omer (Research Center for Interneural Computing, China Medical University) |
1 | Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B-Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030. DOI |
2 | Senjanovic, I., Tomic, M., Vladimir, N. and Hadzic, N. (2015), "An approximate analytical procedure for natural vibration analysis of free rectangular plates", Thin Wall. Struct., 95, 101-114. https://doi.org/10.1016/j.tws.2015.06.015. DOI |
3 | Di Sciuva, M. and Sorrenti, M. (2019), "Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended Refined Zigzag Theory", Compos. Struct., 227, 111324. https://doi.org/10.1016/j.compstruct.2019.111324. DOI |
4 | Civalek, O. (2019), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Meth. Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254. DOI |
5 | Civalek, O., Korkmaz, A. and Demir, C. (2010), "Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges", Adv. Eng. Softw., 41(4), 557-560. https://doi.org/10.1016/j.advengsoft.2009.11.002. DOI |
6 | Datta, N. and Verma, Y. (2018), "Analytical scrutiny and prominence of beam-wise rigid-body modes in vibration of plates with translational edge restraints", Int. J. Mech. Sci., 135, 124-132. https://doi.org/10.1016/j.ijmecsci.2017.11.019 DOI |
7 | Dozio, L. and Carrera, E. (2011), "A variable kinematic Ritz formulation for vibration study of quadrilateral plates with arbitrary thickness", J. Sound Vib., 330(18), 4611-4632. https://doi.org/10.1016/j.jsv.2011.04.022. DOI |
8 | Duan, G. and Wang, X. (2014), "Vibration analysis of stepped rectangular plates by the discrete singular convolution algorithm", Int. J. Mech. Sci., 82, 100-109. https://doi.org/10.1016/j.ijmecsci.2014.03.004. DOI |
9 | Gupta, A., Jain, N.K., Salhotra, R. and Joshi, P.V. (2015), "Effect of microstructure on vibration characteristics of partially cracked rectangular plates based on a modified couple stress theory", Int. J. Mech. Sci., 100, 269-282. https://doi.org/10.1016/j.ijmecsci.2015.07.004. DOI |
10 | Huang, C.S., Lee, M.C. and Chang, M.J. (2018), "Vibration and buckling analysis of internally cracked square plates by the MLS-Ritz approach", Int. J. Struct. Stab. Dyn., 18(9), 1850105. https://doi.org/10.1142/S0219455418501055. DOI |
11 | Li, R., Wang, B. and Li, P. (2014), "Hamiltonian system-based benchmark bending solutions of rectangular thin plates with a corner point-supported", Int. J. Mech. Sci., 85, 212-218. https://doi.org/10.1016/j.ijmecsci.2014.05.004. DOI |
12 | Ilkhani, M.R., Bahrami, A. and Hosseini-Hashemi, S.H. (2016), "Free vibrations of thin rectangular nano-plates using wave propagation approach", Appl. Math. Model., 40(2), 1287-1299. https://doi.org/10.1016/j.apm.2015.06.032. DOI |
13 | Joshi, P.V., Jain, N.K. and Ramtekkar, G.D. (2015), "Analytical modelling for vibration analysis of partially cracked orthotropic rectangular plates", Eur. J. Mech.-A/Solid., 50, 100-111. https://doi.org/10.1016/j.euromechsol.2014.11.007. DOI |
14 | ABAQUS (2013), Analysis User'S Guide V6.13, Dassault Systemes, Pawtucket, RI. |
15 | Abolghasemi, S., Eipakchi, H.R. and Shariati, M. (2016), "An analytical procedure to study vibration of rectangular plates under non-uniform in-plane loads based on first-order shear deformation theory", Arch. Appl. Mech., 86(5), 853-867. https://doi.org/10.1007/s00419-015-1066-8. DOI |
16 | Zhang, J., Ullah, S. and Zhong, Y. (2020), "Accurate free vibration solutions of orthotropic rectangular thin plates by straightforward finite integral transform method", Arch. Appl. Mech., 90(2), 353-368. https://doi.org/10.1007/s00419-019-01613-1 DOI |
17 | Li, R., Zheng, X., Wang, P., Wang, B., Wu, H., Cao, Y. and Zhu, Z. (2019b), "New analytic free vibration solutions of orthotropic rectangular plates by a novel symplectic approach", Acta Mechanica, 230(9), 3087-3101. https://doi.org/10.1007/s00707-019-02448-1. DOI |
18 | Li, R., Tian, B. and Zhong, Y. (2013), "Analytical bending solutions of free orthotropic rectangular thin plates under arbitrary loading", Meccanica, 48(10), 2497-2510. https://doi.org/10.1007/s11012-013-9764-1. DOI |
19 | Kumar, S., Ranjan, V. and Jana, P. (2018), "Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method", Comput. Struct., 197, 39-53. https://doi.org/10.1016/j.compstruct.2018.04.085. DOI |
20 | Lai, S.K. and Xiang, Y. (2009), "DSC analysis for buckling and vibration of rectangular plates with elastically restrained edges and linearly varying in-plane loading", Int. J. Struct. Stab. Dyn., 09(03), 511-531. https://doi.org/10.1142/S0219455409003119. DOI |
21 | Li, R., Wang, P., Yang, Z., Yang, J. and Tong, L. (2018a), "On new analytic free vibration solutions of rectangular thin cantilever plates in the symplectic space", Appl. Math. Model., 53, 310-318. https://doi.org/10.1016/j.apm.2017.09.011. DOI |
22 | Li, Y., Zhou, M. and Li, M. (2020), "Analysis of the free vibration of thin rectangular plates with cut-outs using the discrete singular convolution method", Thin Wall. Struct., 147, 106529. https://doi.org/10.1016/j.tws.2019.106529 DOI |
23 | Civalek, O. and Baltacioglu, A.K. (2019), "Free vibration analysis of laminated and FGM composite annular sector plates", Compos. Part B-Eng., 157, 182-194. https://doi.org/10.1016/j.compositesb.2018.08.101. DOI |
24 | Canales, F.G. and Mantari, J.L. (2018), "An assessment of fluid compressibility influence on the natural frequencies of a submerged plate via unified formulation", Ocean Eng., 147, 414-430. https://doi.org/10.1016/j.oceaneng.2017.08.026. DOI |
25 | Chen, Y., Jin, G. and Liu, Z. (2014), "Flexural and in-plane vibration analysis of elastically restrained thin rectangular plate with cutout using Chebyshev-Lagrangian method", Int. J. Mech. Sci., 89, 264-278. https://doi.org/10.1016/j.ijmecsci.2014.09.006. DOI |
26 | Civalek, O. and Akgoz, B. (2013), "Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix", Comput. Mater. Sci., 77, 295-303. https://doi.org/10.1016/j.commatsci.2013.04.055. DOI |
27 | Eftekhari, S.A. and Jafari, A.A. (2013), "Accurate variational approach for free vibration of variable thickness thin and thick plates with edges elastically restrained against translation and rotation", Int. J. Mech. Sci., 68, 35-46. https://doi.org/10.1016/j.ijmecsci.2012.12.012. DOI |
28 | Huang, C.S. and Chan, C.W. (2013), "Vibration analyses of cracked plates by the ritz method with moving least-squares interpolation functions", Int. J. Struct. Stab. Dyn., 14(2), 1350060. https://doi.org/10.1142/S0219455413500600. DOI |
29 | Thai, C.H., Ferreira, A.J.M., Lee, J. and Nguyen-Xuan, H. (2018), "An efficient size-dependent computational approach for functionally graded isotropic and sandwich microplates based on modified couple stress theory and moving Kriging-based meshfree method", Int. J. Mech. Sci., 142, 322-338. https://doi.org/10.1016/j.ijmecsci.2018.04.040. DOI |
30 | Lim, C.W., Lu, C.F., Xiang, Y. and Yao, W. (2009), "On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates", Int. J. Mech. Sci., 47(1), 131-140. https://doi.org/10.1016/j.ijengsci.2008.08.003. DOI |
31 | Thai, C.H., Nguyen, T.N., Rabczuk, T. and Nguyen-Xuan, H. (2016), "An improved moving Kriging meshfree method for plate analysis using a refined plate theory", Comput. Struct., 176, 34-49. https://doi.org/10.1016/j.compstruc.2016.07.009. DOI |
32 | Thai, C.H. and Nguyen-Xuan, H. (2019), "A moving kriging interpolation meshfree method based on naturally stabilized nodal integration scheme for plate analysis", Int. J. Comput. Meth., 16(4), 1850100. https://doi.org/10.1142/S0219876218501001. DOI |
33 | Thang, P.T., Nguyen-Thoi, T., Lee, D., Kang, J. and Lee, J. (2018), "Elastic buckling and free vibration analyses of porous-cellular plates with uniform and non-uniform porosity distributions", Aerosp. Sci. Technol., 79, 278-287. https://doi.org/10.1016/j.ast.2018.06.010. DOI |
34 | Malekzadeh, P. and Shojaee, M. (2018), "A unified formulation for free vibration of functionally graded plates", Sci. Eng. Compos. Mater., 25(1), 109-122. https://doi.org/10.1515/secm2016-0031. DOI |
35 | Liu, B. and Xing, Y. (2011a), "Exact solutions for free vibrations of orthotropic rectangular Mindlin plates", Compos. Struct., 93(7), 1664-1672. https://doi.org/10.1016/j.compstruct.2011.01.014. DOI |
36 | Liu, B. and Xing, Y. (2011b), "Exact solutions for free in-plane vibrations of rectangular plates", Acta Mechanica Solida Sinica, 24(6), 556-567. https://doi.org/10.1016/S0894-9166(11)60055-4. DOI |
37 | Malekzadeh, P. and Karami, G. (2008), "Large amplitude flexural vibration analysis of tapered plates with edges elastically restrained against rotation using DQM", Eng. Struct., 30(10), 2850-2858. https://doi.org/10.1016/j.engstruct.2008.03.016. DOI |
38 | Papkov, S.O. (2016), "A new method for analytical solution of inplane free vibration of rectangular orthotropic plates based on the analysis of infinite systems", J. Sound Vib., 369, 228-245. https://doi.org/10.1016/j.jsv.2016.01.025. DOI |
39 | Papkov, S.O. and Banerjee, J.R. (2015), "A new method for free vibration and buckling analysis of rectangular orthotropic plates", J. Sound Vib., 339, 342-358. https://doi.org/10.1016/j.jsv.2014.11.007. DOI |
40 | Ullah, S., Zhang, J. and Zhong, Y. (2019), "Accurate buckling analysis of rectangular thin plates by double finite sine integral transform method", Struct. Eng. Mech., 72(4), 491-502. http://doi.org/10.12989/SEM.2019.72.4.491. DOI |
41 | Wang, Z., Xing, Y., Sun, Q. and Yang, Y. (2019), "Highly accurate closed-form solutions for free vibration and eigenbuckling of rectangular nanoplates", Compos. Struct., 210, 822-830. https://doi.org/10.1016/j.compstruct.2018.11.094. DOI |
42 | Watts, G., Pradyumna, S. and Singha, M.K. (2018),"Free vibration analysis of non-rectangular plates in contact with bounded fluid using element free Galerkin method", Ocean Eng., 160, 438-448. https://doi.org/10.1016/j.oceaneng.2018.04.056. DOI |
43 | Ugurlu, B. (2016), "Boundary element method based vibration analysis of elastic bottom plates of fluid storage tanks resting on Pasternak foundation", Eng. Anal. Bound. Elem., 62, 163-176. https://doi.org/10.1016/j.enganabound.2015.10.006. DOI |
44 | Xing, Y., Sun, Q., Liu, B. and Wang, Z. (2018), "The overall assessment of closed-form solution methods for free vibrations of rectangular thin plates", Int. J. Mech. Sci., 140, 455-470. https://doi.org/10.1016/j.ijmecsci.2018.03.013. DOI |
45 | Xu, T. and Xing, Y. (2016), "Closed-form solutions for free vibration of rectangular FGM thin plates resting on elastic foundation", Acta Mechanica Sinica, 2(6), 1088-1103. https://doi.org/10.1007/s10409-016-0600-4. DOI |
46 | Zeng, H.C., Huang, C.S., Leissa, A.W. and Chang M.J. (2016), "Vibrations and stability of a loaded side-cracked rectangular plate via the MLS-Ritz method", Thin Wall. Struct., 106, 459-470. https://doi.org/10.1016/j.tws.2016.05.013. DOI |
47 | Zhang, S. and Xu, L. (2017), "Bending of rectangular orthotropic thin plates with rotationally restrained edges: A finite integral transform solution", Appl. Math. Model., 46, 48-62. http://doi.org/10.1016/j.apm.2017.01.053. DOI |
48 | Zheng, X., Sun, Y., Huang, M., An, D., Li, P., Wang, B. and Li, R. (2019), "Symplectic superposition method-based new analytic bending solutions of cylindrical shell panels", Int. J. Mech. Sci., 152, 432-442. https://doi.org/10.1016/j.ijmecsci.2019.01.012. DOI |
49 | Li, R., Zheng, X., Wang, H., Xiong, S., Yan, K. and Li, P. (2018b), "New analytic buckling solutions of rectangular thin plates with all edges free", Int. J. Mech. Sci., 144, 67-73. https://doi.org/10.1016/j.ijmecsci.2018.05.041. DOI |
50 | Zhang, Y., Du, J., Yang, T. and Liu, Z. (2014), "A series solution for the in-plane vibration analysis of orthotropic rectangular plates with elastically restrained edges", Int. J. Mech. Sci., 79, 15-24. https://doi.org/10.1016/j.ijmecsci.2013.11.018 DOI |
51 | Zhou, Y. and Wang, Z. (2014), "Application of the differential quadrature method to free vibration of viscoelastic thin plate with linear thickness variation", Meccanica, 49(12), 2817-2828. https://doi.org/10.1007/s11012-014-0043-6. DOI |
52 | Xing, Y., Wang, Z. and Xu, T. (2018), "Closed-form analytical solutions for free vibration of rectangular functionally graded thin plates in thermal environment", Int. J. Appl. Mech., 10(3), 1850025. https://doi.org/10.1142/S1758825118500254. DOI |
53 | Liu, T., Hu, G., Wang, A. and Wang, Q. (2019), "A unified formulation for free in-plane vibrations of arbitrarily-shaped straight-sided quadrilateral and triangular thin plates", Appl. Acoust., 155, 407-422. https://doi.org/10.1016/j.apacoust.2019.06.014. DOI |
54 | Wang, X. and Yuan, Z. (2017), "Discrete singular convolution and Taylor series expansion method for free vibration analysis of beams and rectangular plates with free boundaries", Int. J. Mech. Sci., 122, 184-191. https://doi.org/10.1016/j.ijmecsci.2017.01.023. DOI |
55 | Malekzadeh, P. and Beni, A.A. (2015), "Nonlinear free vibration of in-plane functionally graded rectangular plates", Mech. Adv. Mater. Struct., 22(8), 633-640. https://doi.org/10.1080/15376494.2013.828818. DOI |
56 | Hashemi, S.H., Karimi, M. and Taher H.R.D. (2010), "Vibration analysis of rectangular Mindlin plates on elastic foundations and vertically in contact with stationary fluid by the Ritz method", Ocean Eng., 37(2-3), 174-185. https://doi.org/10.1016/j.oceaneng.2009.12.001. DOI |
57 | Hwu, C., Hsu, H.W. and Lin, Y.H. (2017), "Free vibration of composite sandwich plates and cylindrical shells",Compos. Struct., 171, 528-537. https://doi.org/10.1016/j.compstruct.2017.03.042. DOI |
58 | Kumar, S. and Jana, P. (2019), "Application of dynamic stiffness method for accurate free vibration analysis of sigmoid and exponential functionally graded rectangular plates", Int. J. Mech. Sci., 163, 105105. https://doi.org/10.1016/j.ijmecsci.2019.105105. DOI |
59 | Li, R., Wang, H., Zheng, X., Xiong, S., Hu, Z., Yan, X., Xiao, Z., Xu, H. and Li, P. (2019a), "New analytic buckling solutions of rectangular thin plates with two free adjacent edges by the symplectic superposition method", Eur. J. Mech. A-Solid., 76, 247-262. https://doi.org/10.1016/j.euromechsol.2019.04.014. DOI |
60 | Li, R., Zheng, X., Yang, Y., Huang, M. and Huang, X. (2019c), "Hamiltonian system-based new analytic free vibration solutions of cylindrical shell panels", Appl. Math. Model., 76, 900-917. https://doi.org/10.1016/j.apm.2019.07.020. DOI |
61 | Najarzadeh, L., Movahedian, B. and Azhari, M. (2018), "Free vibration and buckling analysis of thin plates subjected to high gradients stresses using the combination of finite strip and boundary element methods", Thin Wall. Struct., 123, 36-47. https://doi.org/10.1016/j.tws.2017.11.015. DOI |
62 | Razavi, S. and Shooshtari, A. (2015), "Nonlinear free vibration of magneto-electro-elastic rectangular plates", Comput. Struct., 119, 377-384. https://doi.org/10.1016/j.compstruct.2014.08.034. DOI |