1 |
Talatahari, S. and Sheikholeslami, R. (2014), "Optimum design of gravity and reinforced retaining walls using enhanced charged system search algorithm", KSCE J. Civil Eng., 18(5), 1464-1469. https://doi.org/10.1007/s12205-014-0406-5.
DOI
|
2 |
Saribas, A. and Erbatur, F. (1996), "Optimization and sensitivity of retaining structures", J. Geotech. Eng., 122(8), 649-656. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:8(649).
DOI
|
3 |
Fenu, L., Briseghella, B. and Marano, G.C. (2019), "Simplified method to design laterally loaded piles with optimum shape and length", Struct. Eng. Mech., 71(2), 119-129. https://doi.org/10.12989/sem.2019.71.2.119
DOI
|
4 |
Gajan, S. (2011), "Normalized relationships for depth of embedment of sheet pile walls and soldier pile walls in cohesionless soils", Soil. Found., 51(3), 559-564. https://doi.org/10.3208/sandf.51.559.
DOI
|
5 |
Kaveh, A., Kalateh-Ahani, M. and Fahimi-Farzam, M. (2013), "Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm", Struct. Eng. Mech., 47(2), 227-245. https://doi.org/10.12989/sem.2013.47.2.227.
DOI
|
6 |
Kay, S., Griffiths, D.V. and Kolk, H.J. (1985), "Application of pressuremeter testing to assess lateral pile response in clays", The Pressuremeter and its Marine Applications: Second International Symposium, ASTM International, January.
|
7 |
Kay, S., Griffiths, D.V. and Kolk, H.J. (1985), "Application of pressuremeter testing to assess lateral pile response in clays", The Pressuremeter and its Marine Applications: Second International Symposium, ASTM International, January.
|
8 |
King, G.W.J. (1995), "Analysis of cantilever sheet-pile walls in cohesionless soil", J. Geotech. Geoenviron. Eng., 121(9), 629-635. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:9(629).
DOI
|
9 |
Verrujit, A. and Kooijman, A.P. (1989), "Laterally loaded piles in a layered elastic medium", Geotechnique, 39(1), 39-49. https://doi.org/10.1680/geot.1989.39.1.39.
DOI
|
10 |
Kayabekir, A.E., Arama, Z.A., Bekdas, G., Nigdeli, S.M. and Geem, Z.W. (2020), "Eco-friendly design of reinforced concrete retaining walls: Multi-objective optimization with harmony search applications", Sustain., 12(15), 6087. https://doi.org/10.3390/su12156087.
DOI
|
11 |
Lee, C.J., Wei, Y.C., Chen, H.T., Chang, Y.Y., Lin, Y.C. and Huang, W.S. (2011), "Stability analysis of cantilever double soldier-piled walls in sandy soil", J. Chin. Inst. Eng., 34(4), 449-465. https://doi.org/10.1080/02533839.2011.576488.
DOI
|
12 |
Catal, S. (2006), "Analysis of free vibration of beam on elastic soil using differential transform method", Struct. Eng. Mech., 24(1), 51-62. https://doi.org/10.12989/sem.2006.24.1.051.
DOI
|
13 |
ACI 318 (2014), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA
|
14 |
Wang, C., Yu, T., Curiel-Sosa, J.L., Xie, N. and Bui, T.Q. (2019a) "Adaptive chaotic particle swarm algorithm for isogeometric multi-objective size optimization of FG plates", Struct. Multidisc. Optim., 60(2), 757-778. https://doi.org/10.1007/s00158-019-02238-2.
DOI
|
15 |
Yepes, V., Alcala, J., Perea, C. and Gonzalez-Vidosa, F. (2008), "A parametric study of optimum earth-retaining walls by simulated annealing", Eng. Struct., 30(3), 821-830. https://doi.org/10.1016/j.engstruct.2007.05.023.
DOI
|
16 |
Wang, C., Yu, T., Shao, G., Nguyen, T.T. and Bui, T.Q. (2019b), "Shape optimization of structures with cutouts by an efficient approach based on XIGA and chaotic particle swarm optimization", Eur. J. Mech.-A/Solid., 74, 176-187. https://doi.org/10.1016/j.euromechsol.2018.11.009.
DOI
|
17 |
Ceranic, B., Fryer, C. and Baines, R.W. (2001), "An application of simulated annealing to the optimum design of reinforced concrete retaining structures", Comput. Struct., 79(17), 1569- 1581. https://doi.org/10.1016/S0045-7949(01)00037-2.
DOI
|
18 |
Rankine, W. (1857), On the Stability of Loose Earth, Philosophical Transactions of the Royal Society of London.
|
19 |
Khajehzadeh, M., Taha, M.R. and Eslami, M. (2013), "Efficient gravitational search algorithm for optimum design of retaining walls", Struct. Eng. Mech., 45(1), 111-127. https://doi.org/10.12989/sem.2013.45.1.111.
DOI
|
20 |
Celep, Z., Guler, K. and Demir, F. (2011), "Response of a completely free beam on a tensionless Pasternak foundation subjected to dynamic load", Struct. Eng. Mech., 37(1), 61-77. https://doi.org/10.12989/sem.2011.37.1.061.
DOI
|
21 |
Ahmadi-Nedushan, B. and Varaee, H. (2009), "Optimal design of reinforced concrete retaining walls using a swarm intelligence technique", The First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, Stirlingshire, Scotland, September.
|
22 |
Artar, M. and Daloglu, A.T. (2019), "Optimum design of steel space truss towers under seismic effect using Jaya algorithm", Struct. Eng. Mech., 71(1), 1-12. https://doi.org/10.12989/sem.2019.71.1.001.
DOI
|
23 |
Ozturk, H.T. and Turkeli, E. (2019), "Tabaninda anahtar kesiti bulunan betonarme istinat duvarlarinin JAYA algoritmasiyla optimum tasarimi", Politeknik Dergisi, 22(2), 283-291.
|
24 |
Aydogdu, I. (2017), "Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights", Eng. Optim., 49(3), 381-400. https://doi.org/10.1080/0305215X.2016.1191837.
DOI
|
25 |
Bowles, J.E. (1988), Foundation Analysis and Design, McGraw-Hill, New York, USA.
|
26 |
Camp, C.V. and Akin, A. (2012), "Design of retaining walls using big bang-big crunch optimization", J. Struct. Eng., ASCE, 138(3), 438-448. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000461.
DOI
|
27 |
Powrie, W. (1997), Soil Mechanics: Concepts and Applications, E and FN Spon, An Imprint of Chapman and Hall, London, UK.
|
28 |
Artar, M. and Daloglu, A.T. (2020), "A research on optimum designs of steel frames including soil effects or semi rigid supports using Jaya algorithm", Struct. Eng. Mech., 73(2), 153-165. https://doi.org/10.12989/sem.2020.73.2.153.
DOI
|
29 |
Cakir, T. (2014), "Influence of wall flexibility on dynamic response of cantilever retaining walls", Struct. Eng. Mech., 49(1), 1-22. https://doi.org/10.12989/sem.2014.49.1.001.
DOI
|
30 |
Wang, C., Yu, T., Shao, G. and Bui, T.Q. (2021), "Multi-objective isogeometric integrated optimization for shape control of piezoelectric functionally graded plates", Comput. Meth. Appl. Mech. Eng., 377, 113698. https://doi.org/10.1016/j.cma.2021.113698.
DOI
|
31 |
Rao, R. (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", Int. J. Indus. Eng. Comput., 7(1), 19-34. https://doi.org/10.5267/j.ijiec.2015.8.004.
DOI
|
32 |
Dembicki, E. and Chi, T. (1989), "System analysis in calculation of cantilever retaining wall", Int. J. Numer. Anal. Meth. Geomech., 13(6), 599-610. https://doi.org/10.1002/nag.1610130603.
DOI
|
33 |
Dorigo, M., Maniezzo, V. and Colorni, A. (1996), "The ant system: optimization by a colony of cooperating agents", IEEE Tran. Syst. Man Cybern. B, 26(1), 29-41. https://doi.org/10.1109/3477.484436.
DOI
|
34 |
Fenu, L., Briseghella, B. and Marano, G.C. (2018), "Optimum shape and length of laterally loaded piles", Struct. Eng. Mech., 68(1), 121-130. https://doi.org/10.12989/sem.2018.68.1.121.
DOI
|
35 |
Konagai, K., Yin, Y. and Yoshitaka, M. (2003), "Single beam analogy for describing soil-pile group interaction", Soil Dyn. Earthq. Eng., 23, 31-39. https://doi.org/10.1016/S0267-7261(02)00212-9.
DOI
|
36 |
Sheikholeslami, R., Gholipour Khalili, B. and Zahrai, S. M. (2014), "Optimum cost design of reinforced concrete retaining walls using hybrid firefly algorithm", Int. J. Eng. Technol., 6(6), 465-470. https://doi.org/10.7763/IJET.2014.V6.742.
DOI
|
37 |
Celep, Z. and Kumbasar, N. (2005), Betonarme Yapilar, Beta Basim Yayin Dagitim, Istanbul, Turkey.
|
38 |
Clayton, C.R.I. and Militisky, J. (1993), Earth Pressure and Earth Retaining Structures, Blackie Academic & Professional, New York, USA.
|
39 |
Ozturk, H.T. and Dede, T. (2017), "Payandali betonarme istinat duvarlarinin jaya algoritmasiyla optimum tasarimi", 7. Geoteknik Sempozyumu, Istanbul, Turkey, October.
|
40 |
Poulos, H.G. (1971), "Behavior of laterally loaded piles: II-Group piles", ASCE J. Soil Mech. Found. Div., 97(5), 733-751.
DOI
|
41 |
Powrie, W. (1996), "Limit equilibrium analysis of embedded retaining walls", Geotechnique, 46(4) 709-723. https://doi.org/10.1680/geot.1996.46.4.709.
DOI
|
42 |
Randolph, M.F. (1981), "The response of flexible piles to lateral loading", Geotechnique, 31, 247-259. https://doi.org/10.1680/geot.1981.31.2.247.
DOI
|
43 |
Lee, C.J., Chen, H.T., Wei, Y.C., Lin, Y.C., Huang, W.S. and Chiang, K.H. (2007), "Centrifuge modeling of a self-supported double soldier-piled wall in sandy soil", J. Geoeng., 2(3), 97-109.
|
44 |
Mergos, P.E. and Mantoglou, F. (2020), "Optimum design of reinforced concrete retaining wall with the flower pollination algorithm", Struct. Multidisc. Optim., 61(2), 575-585. https://doi:10.1007/s00158-019-02380-x.
DOI
|