Browse > Article
http://dx.doi.org/10.12989/sem.2021.80.1.103

An isogeometrical level set topology optimization for plate structures  

Halaku, A. (Civil Engineering Department, Shahrood University of Technology)
Tavakkoli, S.M. (Civil Engineering Department, Shahrood University of Technology)
Publication Information
Structural Engineering and Mechanics / v.80, no.1, 2021 , pp. 103-112 More about this Journal
Abstract
This study presents topology optimization of plate structures by employing isogeometrical level set method. For structural analysis of plates, the IsoGeometric Analysis (IGA) approach is applied and Non-Uniform Rational B-Splines (NURBS) basis functions are used for approximation of the design domain geometry as well as the unknown deformation field. In this paper, the level set function is parametrized with Radial Basis Functions (RBFs), which is more efficient than the conventional level set method. This approach along with an approximate re-initialization scheme can maintain a smooth level set function during the optimization process and has less dependency on initial designs because of its ability to nucleate new holes inside the design domain. Due to capability of IGA method in modeling complex design domains while maintaining high accuracy in analysis, combination of IGA with RBFs level set method provides a very useful and effective technique for topology optimization problems. Several numerical examples are prepared to demonstrate the efficiency and accuracy of the method and obtained optimum topologies are compared with the results of other methods in literature.
Keywords
isogeometric analysis; level set method; radial basis functions; topology optimization of plates;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hinton, E. and Owen, D.R. (1981), "Finite elements in plasticity: Theory and practice", Appl. Ocean Res., 3(3), 149. https://doi.org/10.1016/0141-1187(81)90117-6.   DOI
2 Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194(39-41), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008.   DOI
3 Thai, C.H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T.H., Nguyen-Thoi, T. and Rabczuk, T. (2012). "Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach", Int. J. Numer. Meth. Eng., 91(6), 571-603. https://doi.org/10.1002/nme.4282.   DOI
4 Wang, M.Y., Wang, X. and Guo, D. (2003), "A level set method for structural topology optimization", Comput. Meth. Appl. Mech. Eng., 192(1-2), 227-246. https://doi.org/10.1016/S0045-7825(02)00559-5.   DOI
5 Yamada, T., Izui, K., Nishiwaki, S. and Takezawa, A. (2010), "A topology optimization method based on the level set method incorporating a fictitious interface energy", Comput. Meth. Appl. Mech. Eng., 199(45-48), 2876-2891. https://doi.org/10.1016/j.cma.2010.05.013.   DOI
6 Wang, S.Y., Lim, K.M., Khoo, B.C. and Wang, M.Y. (2007), "An extended level set method for shape and topology optimization", J. Comput. Phys., 221(1), 395-421. https://doi.org/10.1016/j.jcp.2006.06.029.   DOI
7 Wei, P., Li, Z., Li, X. and Wang, M.Y. (2018), "An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions", Struct. Multidisc. Optim., 58(2), 831-849. https://doi.org/10.1007/s00158-018-1904-8.   DOI
8 Wei, P. and Wang, M.Y. (2006), "The augmented lagrangian method in structural shape and topology optimization with RBF based level set method", Proceedings of the Fourth China-Japan-Korea Joint symposium on Optimization of Structural and Mechanical Systems, Kunming, November.
9 Liu, N., Johnson, E.L., Rajanna, M.R., Lua, J., Phan, N. and Hsu, M.C. (2021), "Blended isogeometric Kirchhoff-Love and continuum shells", Comput. Meth. Appl. Mech. Eng., 385, 114005. https://doi.org/10.1016/j.cma.2021.114005.   DOI
10 Liu, N., Beata, P.A. and Jeffers, A.E. (2019), "A mixed isogeometric analysis and control volume approach for heat transfer analysis of nonuniformly heated plates", Numer. Heat Transf., Part B: Fundament., 75(6), 347-362. https://doi.org/10.1080/10407790.2019.1627801.   DOI
11 Liu, N. and Jeffers, A.E. (2017), "Isogeometric analysis of laminated composite and functionally graded sandwich plates based on a layerwise displacement theory", Compos. Struct., 176, 143-153. https://doi.org/10.1016/j.compstruct.2017.05.037.   DOI
12 Liu, N. and Jeffers, A.E. (2018), "A geometrically exact isogeometric Kirchhoff plate: Feature-preserving automatic meshing and C1 rational triangular Bezier spline discretizations", Int. J. Numer. Meth. Eng., 115(3), 395-409. https://doi.org/10.1002/nme.5809.   DOI
13 Abdelmoety, A.K., Naga, T.H.A. and Rashed, Y.F. (2020), "Isogeometric boundary integral formulation for Reissner's plate problems", Eng. Comput. (Swansea, Wales), 37(1), 21-53. https://doi.org/10.1108/EC-11-2018-0507.   DOI
14 Jahangiry, H.A. and Tavakkoli, S.M. (2017), "An isogeometrical approach to structural level set topology optimization", Comput. Meth. Appl. Mech. Eng., 319, 240-257. https://doi.org/10.1016/j.cma.2017.02.005.   DOI
15 Kansa, E.J., Power, H., Fasshauer, G.E. and Ling, L. (2004), "A volumetric integral radial basis function method for time-dependent partial differential equations. I. Formulation", Eng. Anal. Bound. Elem., 28, 1191-1206. https://doi.org/10.1016/j.enganabound.2004.01.004.   DOI
16 Lee, S.J. and Kim, H.. (2013), "Vibration and buckling of thick plates using isogeometric approach", Arch. Res., 15(1), 35-42. https://doi.org/10.5659/aikar.2013.15.1.35.   DOI
17 Lee, U. and Shin, J. (2002), "A frequency response function-based structural damage identification method", Comput. Struct., 80(2), 117-132. https://doi.org/10.1016/S0045-7949(01)00170-5.   DOI
18 Li, X., Zhang, J. and Zheng, Y. (2013), "NURBS-based isogeometric analysis of beams and plates using high order shear deformation theory", Math. Prob. Eng., 2013, Article ID 159027. https://doi.org/10.1155/2013/159027.   DOI
19 Cheng, K.T. and Olhoff, N. (1981), "An investigation concerning optimal design of solid elastic plates", Int. J. Solid. Struct., 17(3), 305-323. https://doi.org/10.1016/0020-7683(81)90065-2.   DOI
20 Otomori, M., Yamada, T., Izui, K. and Nishiwaki, S. (2015), "Matlab code for a level set-based topology optimization method using a reaction diffusion equation", Struct. Multidisc. Optim., 51(5), 1159-1172. https://doi.org/10.1007/s00158-014-1190-z.   DOI
21 Allaire, G., Jouve, F. and Toader, A.M. (2004), "Structural optimization using sensitivity analysis and a level-set method", J. Comput. Phys., 194(1), 363-393. https://doi.org/10.1016/j.jcp.2003.09.032.   DOI
22 Liu, N., Ren, X. and Lua, J. (2020), "An isogeometric continuum shell element for modeling the nonlinear response of functionally graded material structures", Compos. Struct., 237, 111893. https://doi.org/10.1016/j.compstruct.2020.111893.   DOI
23 Bourgeat, A. and Tapiero, R. (1983), "Homogenization of a transversely perforated plate in the frame of mindlin, hencky theory, in the thermoelastic case with non uniformly oscillating coefficients", Comptes Rendus De L Academie Des Sciences Serie I-Mathematique., 297(3), 213-216.
24 Lurie, K.A. and Cherkaev, A. (1976), "On applying {Prager}'s theorem to the problems of optimal design of thin plates", Mech. Solid., 11(6), 157-159.
25 Wang, Y. and Benson, D.J. (2016), "Isogeometric analysis for parameterized LSM-based structural topology optimization", Comput. Mech., 57(1), 19-35. https://doi.org/10.1007/s00466-015-1219-1.   DOI
26 Beirao Da Veiga, L., Hughes, T.J.R., Kiendl, J., Lovadina, C., Niiranen, J., Reali, A. and Speleers, H. (2015), "A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS", Math. Model. Meth. Appl. Sci., 25(8), 1519-1551. https://doi.org/10.1142/S0218202515500402.   DOI
27 Belblidia, F., Lee, J.E.B., Rechak, S. and Hinton, E. (2001), "Topology optimization of plate structures using a single- or three-layered artificial material model", Adv. Eng. Softw., 32(2), 159-168. https://doi.org/10.1016/S0045-7949(00)00141-3.   DOI
28 Bendsoe, M.P. (1982), "Some smear-out models for integrally stiffened plates with applications to optimal design", Proc. Int. Symp. on Optimum Structural Design, Tucson, Arizona.
29 Olhoff, N., Lurie, K.A., Cherkaev, A.V. and Fedorov, A.V. (1981), "Sliding regimes and anisotropy in optimal design of vibrating axisymmetric plates", Int. J. Solid. Struct., 17(10), 931-948. https://doi.org/10.1016/0020-7683(81)90032-9.   DOI
30 Morse, B.S., Yoo, T.S., Rheingans, P., Chen, D.T. and Subramanian, K.R. (2005), "Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions", ACM SIGGRAPH 2005 Courses, SIGGRAPH 2005. https://doi.org/10.1145/1198555.1198645.   DOI
31 Osher, S. and Sethian, J.A. (1988), "Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations", J. Comput. Phys., 79(1), 12-49. https://doi.org/10.1016/0021-9991(88)90002-2.   DOI
32 Piegl, L. and Tiller, W. (1977), The NURBS Book, New York Tech Science Press, USA.
33 Dunning, P.D., Ovtchinnikov, E., Scott, J. and Kim, H.A. (2016), "Level-set topology optimization with many linear buckling constraints using an efficient and robust eigensolver", Int. J. Numer. Meth. Eng., 107(12), 1029-1053. https://doi.org/10.1002/nme.5203.   DOI
34 Sethian, J.A. and Wiegmann, A. (2000), "Structural boundary design via level set and immersed interface methods", J. Comput. Phys., 163(2), 489-528. https://doi.org/10.1006/jcph.2000.6581.   DOI
35 Soto, C.A. and Diaz, A.R. (1993), "Optimum layout and shape of plate structures using homogenization", Topol. Des. Struct., 407-420. https://doi.org/10.1007/978-94-011-1804-0_29.   DOI
36 Suzuki, K. and Kikuchi, N. (1991), "Generalized layout optimization of three-dimensional shell structures", Proceedings of the Conference on Design Theory, SIAM, Ed. V, Komkov, V., Philadelphia.
37 Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Meth. Appl. Mech. Eng., 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2.   DOI
38 Nakazawa, Y., Kogiso, N., Yamada, T. and Nishiwaki, S. (2016), "Robust topology optimization of thin plate structure under concentrated load with uncertain load position", J. Adv. Mech. Des. Syst. Manuf., 10(4), 1-12. https://doi.org/10.1299/JAMDSM.2016JAMDSM0057.   DOI
39 Cottrell, J.A., Hughes, T.J. and Bazilevs, Y. (2009), Isogeometric Analysis: Toward Integration of CAD and FEA, John Wiley & Sons.
40 Da Veiga, L.B., Buffa, A., Lovadina, C., Martinelli, M. and Sangalli, G. (2012), "An isogeometric method for the Reissner-Mindlin plate bending problem", Comput. Meth. Appl. Mech. Eng., 209-212, 45-53. https://doi.org/10.1016/j.cma.2011.10.009.   DOI
41 Dunning, P.D. and Kim, H.A. (2015), "Introducing the sequential linear programming level-set method for topology optimization", Struct. Multidisc. Optim., 51(3), 631-643. https://doi.org/10.1007/s00158-014-1174-z.   DOI