Browse > Article
http://dx.doi.org/10.12989/sem.2021.79.6.723

Magnetic field effect on nonlinear vibration of nonlocal nanobeam embedded in nonlinear elastic foundation  

Yapanmis, Burak E. (Aliaga Vocational and Training School, Ege University)
Togun, Necla (Department of Mechanical Engineering, Gaziantep University)
Bagdatli, Suleyman M. (Department of Mechanical Engineering, Manisa Celal Bayar University)
Akkoca, Sevki (Department of Mechanical Engineering, Manisa Celal Bayar University)
Publication Information
Structural Engineering and Mechanics / v.79, no.6, 2021 , pp. 723-735 More about this Journal
Abstract
The history of modern humanity is developing towards making the technological equipment used as small as possible to facilitate human life. From this perspective, it is expected that electromechanical systems should be reduced to a size suitable for the requirements of the era. Therefore, dimensionless motion analysis of beams on the devices such as electronics, optics, etc., is of great significance. In this study, the linear and nonlinear vibration of nanobeams, which are frequently used in nanostructures, are focused on. Scenarios have been created about the vibration of nanobeams on the magnetic field and elastic foundation. In addition to these, the boundary conditions (BC) of nanobeams having clamped-clamped and simple-simple support situations are investigated. Nonlinear and linear natural frequencies of nanobeams are found, and the results are presented in tables and graphs. When the results are examined, decreases the vibration amplitudes with the increase of magnetic field and the elastic foundation coefficient. Higher frequency values and correction terms were obtained in clamped-clamped support conditions due to the structure's stiffening.
Keywords
magnetic force effect; multiple scale methods; nanobeam; nonlinear elastic foundation; nonlocal elasticity theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ebrahimi, F. and Barati, M.R. (2017), "Free vibration analysis of couple stress rotating nanobeams with surface effect under inplane axial magnetic field", J. Vib. Control, 24(21), 5097-5107. https://doi.org/10.1177/1077546317744719.   DOI
2 Ebrahimi, F. and Barati, M.R. (2018), "Axial magnetic field effects on dynamic characteristics of embedded multiphase nanocrystalline nanobeams", Microsyst. Technol., 24, 3521-3536. https://doi.org/10.1007/s00542-018-3771-z.   DOI
3 Ebrahimi, F. and Barati, M.R. (2018), "Nonlocal and surface effects on vibration behavior of axially loaded flexoelectric nanobeams subjected to in-plane magnetic field", Arab. J. Sci. Eng., 43, 1423-1433. https://doi.org/10.1007/s13369-017-2943-y.   DOI
4 Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.   DOI
5 Stamenkovic, M.B., Karlicic, D., Janevski, G. and Kozic, P. (2016), "Nonlocal forced vibration of a double single-walled carbon nanotube system under the influence of an axial magnetic field", J. Mech. Mater. Struct., 11(3), 279-307. https://doi.org/10.2140/jomms.2016.11.279.   DOI
6 Arda, M. and Aydogdu, M. (2018), "Longitudinal magnetic field effect on torsional vibration of carbon nanotubes", J. Comput. Appl. Mech., 49(2), 304-313. https://doi.org/10.22059/jcamech.2018.269982.344.   DOI
7 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.   DOI
8 Hosseini, M. and Goughari, M.S. (2016), "Vibration and instability analysis of nanotubes conveying fluid subjected to a longitudinal magnetic field", Appl. Math. Model., 40(4), 2560-2576. https://doi.org/10.1016/j.apm.2015.09.106.   DOI
9 Jandaghian, A.A. and Rahmani, O. (2016), "Free vibration analysis of magneto-electrothermo-elastic nanobeams resting on a Pasternak foundation", Smart Mater. Struct., 25, 035023. https://doi.org/10.1088/0964-1726/25/3/035023.   DOI
10 Jena, S.K., Chakraverty, S. and Malikan, M. (2020), "Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler-Pasternak elastic foundation using a new refined beam theory: An analytical approach", Eur. Phys. J. Plus, 135, 164. https://doi.org/10.1140/epjp/s13360-020-00176-3   DOI
11 Arefi, M. and Zenkour, A.M. (2018), "Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams", Steel Compos. Struct., 29, 579-590. https://doi.org/10.12989/scs.2018.29.5.579.   DOI
12 Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low Dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.   DOI
13 Baghani, M., Mohammadi, M. and Farajpour, A. (2016), "Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy", Int. J. Appl. Mech., 8, 4. https://doi.org/10.1142/S1758825116500484.   DOI
14 Bakhtiari, I., Behrouz, S.J. and Rahmani, O. (2020), "Nonlinear forced vibration of a curved micro beam with a surface-mounted light-driven actuator", Commun. Nonlin. Sci. Numer. Simul., 91, 105420. https://doi.org/10.1016/j.cnsns.2020.105420.   DOI
15 Tang, Y., Lv, X. and Yang, T. (2019), "Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration", Compos. Part B, 156, 319-331. https://doi.org/10.1016/j.compositesb.2018.08.140.   DOI
16 Akkoca, S., Bagdatli, S.M. and Togun, N.K. (2021), "Linear vibration movements of the mid-supported micro beam", J. Facult. Eng. Arch. Gazi Univ., 36(2), 1089-1103. https://doi.org/10.17341/gazimmfd.734809   DOI
17 Cajic, M.S., Lazarevic, M.P. and Karlicic, D.Z. (2015), "Nonlocal frequency analysis of a nanobeam under axial magnetic field using finite element method", Proceedings of the 8th GRACM International Congress on Computational Mechanics, July.
18 Abdullah, S.S., Hashemi, S.H., Hussein, N.A. and Nazemnezhad, R. (2020), "Thermal stress and magnetic effects on nonlinear vibration of nanobeams embedded in nonlinear elastic medium", J. Therm. Stress., 43(10), 1316-1332. https://doi.org/10.1080/01495739.2020.1780175.   DOI
19 Tang, Y. and Yang, T. (2018), "Bi-directional functionally graded nanotubes: fluid conveying dynamics", Int. J. Appl. Mech., 10(4), 1850041. https://doi.org/10.1142/S1758825118500412.   DOI
20 Tang, Y., Ma, Z.S., Ding, Q. and Wang, T. (2021) "Dynamic interaction between bi-directional functionally graded materials and magneto-electro-elastic fields: A nano-structure analysis", Compos. Struct., 264, 113746. https://doi.org/10.1016/j.compstruct.2021.113746.   DOI
21 Barati, A., Hadi, A., Nejad, M.Z. and Noroozi, R. (2020), "On vibration of bi-directional functionally graded nanobeams under magnetic field", Mech. Bas. Des. Struct. Mach., 1-18. https://doi.org/10.1080/15397734.2020.1719507.   DOI
22 Rahmani, O. and Asemani, S.S. (2020), "Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories", Struct. Eng. Mech., 74(2), 175-187. http://doi.org/10.12989/sem.2020.74.2.175.   DOI
23 Behrouz, S.J., Rahmani, O. and Hossein, S.A. (2019), "On nonlinear forced vibration of nano cantilever-based biosensor via couple stress theory", Mech. Syst. Signal Pr., 128, 19-36. https://doi.org/10.1016/j.ymssp.2019.03.020.   DOI
24 Jandaghian, A. and Rahmani, O. (2017), "Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions", Steel Compos. Struct., 25(1), 67-78. https://doi.org/10.12989/scs.2017.25.1.067.   DOI
25 Cajic, M., Lazarevic, L., Karlici, D., Sun, H. and Liu, X. (2018), "Fractional-order model for the vibration of a nanobeam influenced by an axial magnetic field and attached nanoparticles", Acta Mech., 229, 4791-4815. https://doi.org/10.1007/s00707-018-2263-7.   DOI
26 Chang, T. (2015), "Large amplitude free vibration of nanobeams subjected to magnetic field based on nonlocal elasticity theory", Appl. Mech. Mater., 764-765, 1199-1203, https://doi.org/10.4028/www.scientific.net/AMM.764-765.1199.   DOI
27 Tang, Y., Wang, T. and Zheng, Y. (2020), "Thermal effect on wave propagation behavior of viscoelastic carbon nanotubes conveying fluid with the spinning and longitudinal motions", Mod. Phys. Lett. B, 35(2), 2150052. https://doi.org/10.1142/S0217984921500524.   DOI
28 Karlicic, D., Jovanovic, D., Kozic, P. and Cajic, M. (2015), "Thermal and magnetic effects on the vibration of a cracked nanobeam embedded in an elastic medium". J. Mech. Mater. Struct., 10, 43-62. https://doi.org/10.2140/jomms.2015.10.43.   DOI
29 Murmu, T., McCarthy, M.A. and Adhikari, S. (2012), "Nonlocal elasticity based magnetic field affected vibration response of double single-walled carbon nanotube systems", J. Appl. Phys., 111, 113511. http://doi.org/10.1063/1.4720084   DOI
30 Nayfeh, A.H. (1981), Introduction to Perturbation Techniques, John Wiley, New York, USA.
31 Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.   DOI
32 Sari, M.S. (2016), "Superharmonic resonance analysis of nonlocal nano beam subjected to axial thermal and magnetic forces and resting on a nonlinear elastic foundation", Microsyst. Technol., 23(8), 3319-3330. https://doi.org/10.1007/s00542-016-3161-3.   DOI
33 Tang, Y., Zhong, S., Yang, T. and Ding, Q. (2019), "Interaction between thermal field and two-dimensional functionally graded materials: A structural mechanical example", Int. J. Appl. Mech., 11(10), 1950099. https://doi.org/10.1142/S1758825119500996.   DOI
34 Yang, T., Tang, Y., Lid, Q. and Yang, X.D. (2018), "Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams", Compos. Struct., 204, 313-319. https://doi.org/10.1016/j.compstruct.2018.07.045.   DOI
35 Yapanmis, B.E., Bagdatli, S.M. and Togun, N. (2020), "Investigation of linear vibration behavior of middle supported nanobeam", El-Cezeri J. Sci. Eng., 7(3), 1450-1459. https://doi.org/10.31202/ecjse.741269.   DOI
36 Shojaeefard, M.H., Googarchin, H.S., Mahinzare, M. and Eftekhari S.A. (2018), "Magnetic field effect on free vibration of smart rotary functionally graded nano/microplates: A comparative study on modified couple stress theory and nonlocal elasticity theory", J. Intel. Mater. Syst. Struct., 29(11), 2492-2507. https://doi.org/10.1177/1045389X18770875.   DOI
37 Sobhy, M. and Zenkour, A.M. (2018), "Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams with CNT reinforced face sheets on a viscoelastic substrate", Compos. Part B: Eng., 154(1), 492-506. https://doi.org/10.1016/j.compositesb.2018.09.011.   DOI
38 Refaeinejad, V., Rahmani, O. and Hosseini, S.A.H. (2017), "An analytical solution for bending, buckling, and free vibration of FG nanobeam lying on Winkler-Pasternak elastic foundation using different nonlocal higher order shear deformation beam theories", Scientia Iranica., 24(3), 1635-1653.   DOI
39 Sun, X., Hong, Y., Dai, H. and Wang, L. (2017), "Nonlinear frequency analysis of buckled nanobeams in the presence of longitudinal magnetic field", Acta Mechanica Solida Sinica, 30(5), 465-473. https://doi.org/10.1016/j.camss.2017.08.002.   DOI
40 Tang, Y. and Ding, Q. (2019), "Nonlinear vibration analysis of a bi-directional functionally graded beam under hygro-thermal loads", Compos. Struct., 225, 111076. https://doi.org/10.1016/j.compstruct.2019.111076.   DOI
41 Zhao, D., Liu, Y. and Tang, Y. (2018), "Effects of magnetic field on size sensitivity of nonlinear vibration of embedded nanobeams", Mech. Adv. Mater. Struct., 26(11), 948-956. https://doi.org/10.1080/15376494.2018.1432783   DOI
42 Zhen, Y., Wen, S. and Tang, Y. (2019), "Free vibration analysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model", Physica E: Low Dimens. Syst. Nanostruct., 105, 116-124. https://doi.org/10.1016/j.physe.2018.09.005.   DOI
43 Ebrahimi, F. and Barati, M.R. (2016), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24(3), 549-564. https://doi.org/10.1177/1077546316646239.   DOI
44 Chang, T.P. (2016) "Nonlinear free vibration analysis of nanobeams under magnetic field based on nonlocal elasticity theory", J. Vibroeng., 18(3), http://doi.org/10.21595/jve.2015.16751.   DOI