Browse > Article
http://dx.doi.org/10.12989/sem.2021.79.5.641

A numerical study of a self-centring SMA damper  

Ma, Hongwei (State Key Laboratory of Subtropical Architecture Science, South China University of Technology)
Ling, Yuhong (State Key Laboratory of Subtropical Architecture Science, South China University of Technology)
Publication Information
Structural Engineering and Mechanics / v.79, no.5, 2021 , pp. 641-652 More about this Journal
Abstract
Many SMA-based dampers were presented and they can show both energy dissipating capability and self-centring property. This paper aims to a self-centring damper composed by two groups of pre-tensioned SMA wires and two pre-compressed springs. The three-dimensional solid finite element models of the damper are constructed at ANSYS Workbench environment, and the Auricchio's model is used to simulate the superelastic behaviour of the SMA wires. To simulate the damper assembly process, the models of two springs are compressed and certain pre-tensions are imposed to the SMA wires. The initial stresses for the core components are figured out and imposed to the un-deformed damper. Then, the cyclic loads are imposed to the damper models and the mechanical behaviour of the damper is simulated. The numerical simulation results are compared with the theoretical analysis results based on the Brinson model of the SMA material. For a 1 m long damper with a 5 mm stroke in the case study, both the numerical and theoretical results show that a 35 kN reaction force is offered by the damper. The force-displacement curves of the damper model are flag-shaped, indicating the moderated energy dissipating capacity and full self-centring capability of the damper.
Keywords
damper; energy dissipating; finite element analysis; shape memory alloys; superelastic effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Boyd, J.G. and Lagoudas, D.C. (1996), "A thermodynamical constitute model for shape memory materials .1. The monolithic shape memory alloy", Int. J. Plast., 12(6), 805-842.   DOI
2 Brinson, L.C. and Huang, M.S. (1996), "Simplifications and comparisons of shape memory alloy constitutive models", J. Intell. Mater. Syst. Struct., 7(1), 108-114. https://doi.org/10.1177/1045389X9600700112.   DOI
3 Dolce, M., Cardone, D. and Marnetto, R. (2000), "Implementation and testing of passive control devices based on shape memory alloys", Earthq. Eng. Struct., 29(7), 945-968. https://doi.org/10.1002/1096-9845(200007)29:7<945::AIDEQE958>3.0.CO;2-%23.   DOI
4 Dolce, M., Cardone, D., Ponzo, F.C. and Valente, C. (2005), "Shaking table tests on reinforced concrete frames without and with passive control systems", Earthq. Eng. Struct., 34(14), 1687-1717. https://doi.org/10.1002/eqe.501.   DOI
5 Govindjee, S. and Kasper, E.P. (1997), "A shape memory alloy model for uranium-niobium accounting for plasticity", J. Intell. Mater. Syst. Struct., 8(10), 815-823. https://doi.org/10.1177/1045389X9700801001.   DOI
6 Hashemi, A. and Quenneville, P. (2020), "Large-scale testing of low damage rocking Cross Laminated Timber (CLT) wall panels with friction dampers", Eng. Struct., 206, 110166. https://doi.org/10.1016/j.engstruct.2020.110166.   DOI
7 Auricchio, F., Taylor, R.L. and Lubliner, J. (1997), "Shape-memory alloys: macromodelling and numerical simulations of the superelastic behaviour", Comput. Meth. Appl. M, 146(3-4), 281-312. https://doi.org/10.1016/S0045-7825(96)01232-7.   DOI
8 Hashemi, A. and Quenneville, P. (2020), "Seismic performance of timber structures using rocking walls with low damage hold-down connectors", Struct., 27, 274-284. https://doi.org/10.1016/j.istruc.2020.05.050.   DOI
9 Hu, J.W., Noh, M.H. and Ahn, J.H. (2018), "Experimental investigation on the behaviour of bracing damper systems by utilizing metallic yielding and recentering material devices", Adv. Mater. Sci. Eng., 2018(7),1-15. https://doi.org/10.1155/2018/2813058.   DOI
10 Reese, S. and Christ, D. (2008), "Finite deformation pseudo-elasticity of shape memory alloys-Constitutive modelling and finite element implementation", Int. J. Plast., 24(3), 455-482. https://doi.org/10.1016/j.ijplas.2007.05.005.   DOI
11 Speicher, M., Hodgson, D.E., DesRoches, R. and Leon, R.T. (2009), "Shape memory alloy tension/compression device for seismic retrofit of buildings", J. Mater. Eng. Perform., 18(5-6), 746-753. https://doi.org/10.1007/s11665-009-9433-7.   DOI
12 Tanaka, K., Kobayashi, S. and Sato, Y. (1986), "Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys", Int. J. Plast., 2(1), 59-72. https://doi.org/10.1016/0749-6419(86)90016-1.   DOI
13 van de Lindt, J.W. and Potts, A. (2008), "Shake table testing of a superelastic shape memory alloy response modification device in a wood shearwall", J. Struct. Eng., ASCE, 134(8), 1343-1352. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:8(1343).   DOI
14 Yang, C.S.W., DesRoches, R. and Leon, R.T. (2010), "Design and analysis of braced frames with shape memory alloy and energy-absorbing hybrid devices", Eng. Struct., 32(2), 498-507. https://doi.org/10.1016/j.engstruct.2009.10.011.   DOI
15 Yavari, A., Mirzaeifar, R. and DesRoches, R. (2010), "Exact solutions for pure torsion of shape memory alloy circular bars", Mech. Mater., 42(8), 797-806. https://doi.org/10.1016/j.mechmat.2010.06.003.   DOI
16 Yavari, A., Mirzaeifar, R. and DesRoches, R. (2011), "A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs", Int. J. Solid. Struct., 48(3-4), 611-624. https://doi.org/10.1016/j.ijsolstr.2010.10.026.   DOI
17 Jamalpour, R., Nekooei, M. and Moghadam, A.S. (2017), "Seismic behaviour of steel column-base-connection equipped by NiTi shape memory alloy", Struct. Eng. Mech., 64(1), 109-120. http://doi.org/10.12989/sem.2017.64.1.109.   DOI
18 Jiang, X.J. and Li, B.T. (2017), "Finite element analysis of a superelastic shape memory alloy considering the effect of plasticity", J. Theor. Appl. Mech., 55(4), 1355-1368. http://doi.org/10.15632/jtam-pl.55.4.1355.   DOI
19 Kheyroddin, A., Gholhaki, M. and Pachideh, G. (2019), "Seismic evaluation of reinforced concrete moment frames retrofitted with steel braces using IDA and pushover methods in the near-fault field", J. Rehab. Civil Eng., 7(1), 227-241. https://doi.org/10.22075/jrce.2018.12347.1211.   DOI
20 Khodaei, H. and Terriault, P. (2018), "Experimental validation of shape memory material model implemented in commercial finite element software under multiaxial loading", J. Intell. Mater. Syst. Struct., 29(14), 2954-2965. https://doi.org/10.1177/1045389X18781047.   DOI
21 Li, H.N., Huang, Z., Fu, X. and Li, G. (2018), "A re-centering deformation-amplified shape memory alloy damper for mitigating seismic response of building structures", Struct. Control Hlth., 25(9), e2233. https://doi.org/10.1002/stc.2233.   DOI
22 Li, H., Mao, C.X. and Ou, J.P. (2008), "Experimental and theoretical study on two types of shape memory alloy devices", Earthq. Eng. Struct., 37(3), 407-426. https://doi.org/10.1002/eqe.761.   DOI
23 Liang, C. and Rogers, C.A. (1992), "A multidimensional constitutive model for shape memory alloys", J. Eng. Math., 26(3), 429-443. https://doi.org/10.1007/BF00042744.   DOI
24 Martowicz, A., Bryla, J., Staszewski, W.J., Ruzzene, M. and Uhl, T. (2019), "Nonlocal elasticity in shape memory alloys modeled using peridynamics for solving dynamic problems", Nonlin. Dyn., 97(3), 1911-1935. https://doi.org/10.1007/s11071-019-04943-5.   DOI
25 Ma, H. and Yam, M.C.H. (2011), "Modelling of a self-centring damper and its application in structural control", J. Constr. Steel Res., 67(4), 656-666. https://doi.org/10.1016/j.jcsr.2010.11.014.   DOI
26 Ma, H. and Cho, C. (2008), "Feasibility study on a superelastic SMA damper with re-centring capability", Mater. Sci. Eng. A-Struct., 473(1-2), 290-296. https://doi.org/10.1016/j.msea.2007.04.073.   DOI
27 Zhu, S. and Zhang, Y. (2007), "Seismic behaviour of self-centring braced frame buildings with reusable hysteretic damping brace", Earthq. Eng. Struct., 36(10), 1329-1346. https://doi.org/10.1002/eqe.683.   DOI
28 Souza, A.C., Mamiya, E.N. and Zouain, N. (1998), "Three-dimensional model for solids undergoing stress-induced phase transformations", Eur. J. Mech A-Solid., 17(5), 789-806. https://doi.org/10.1016/S0997-7538(98)80005-3.   DOI
29 Shinde, D., Katariya, P.V., Mehar, K., Khan, M.R., Panda, S.K. and Pandey, H.K. (2018), "Experimental training of shape memory alloy fibres under combined thermomechanical loading", Struct. Eng. Mech., 68(5), 519-526. http://doi.org/10.12989/sem.2018.68.5.519.   DOI
30 Zhang, Y.F. and Zhu, S.Y. (2008), "Seismic response control of building structures with superelastic shape memory alloy wire dampers", J. Eng. Mech., ASCE, 134(3), 240-251. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:3(240).   DOI
31 Zuo, X.B., Li, A.Q. and Chen, Q.F. (2008), "Design and analysis of a superelastic SMA damper", J. Intell. Mater. Syst. Struct., 19(6), 631-639. https://doi.org/10.1177/1045389X07078085.   DOI
32 Wang, B., Zhu, S.Y., Casciati, F., Chen, K.X. and Jiang, H.J. (2021), "Cyclic behaviour and deformation mechanism of superelastic SMA U-shaped dampers under in-plane and out-of-plane loadings", Smart Mater. Struct., 30(5), 055009.   DOI
33 Motahari, S.A., Ghassemieh, M. and Abolmaali, S.A. (2007), "Implementation of shape memory alloy dampers for passive control of structures subjected to seismic excitations", J. Constr. Steel Res., 63(12), 1570-1579. https://doi.org/10.1016/j.jcsr.2007.02.001.   DOI
34 Pachideh, G., Gholhaki, M. and Kafi, M. (2020), "Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper", Steel Compos. Struct., 36(2), 197-211. http://doi.org/10.12989/scs.2020.36.2.197.   DOI
35 Pachideh, G., Kafi, M. and Gholhaki, M. (2020), "Evaluation of cyclic performance of a novel bracing system equipped with a circular energy dissipater", Struct., 28, 467-481. https://doi.org/10.1016/j.istruc.2020.09.007.   DOI
36 Auricchio, F. and Sacco, E. (1997), "A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite", Int. J. Nonlin. Mech., 32(6), 1101-1114. https://doi.org/10.1016/j.istruc.2015.10.013.   DOI
37 Panico, M. and Brinson, L.C. (2008), "Computational modeling of porous shape memory alloys", Int. J. Solid. Struct., 45(21), 5613-5626. https://doi.org/10.1016/j.ijsolstr.2008.06.005.   DOI
38 Qidwai, M.A. and Lagoudas, D.C. (2000), "Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms", Int. J. Numer. Meth. Eng., 47(6), 1123-1168. https://doi.org/10.1002/(SICI)1097-0207(20000228)47:6<1123::AID-NME817>3.0.CO;2-N.   DOI
39 Arghavani, J., Auricchio, F., Naghdabadi, R., Reali, A. and Sohrabpour, S. (2010), "A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings", Int. J. Plastic., 26(7), 976-991. https://doi.org/10.1016/j.ijplas.2009.12.003.   DOI
40 Arghavani, J., Auricchio, F., Naghdabadi, R., Reali, A. and Sohrabpour, S. (2010), "A 3D finite strain phenomenological constitutive model for shape memory alloys considering martensite reorientation", Continuum. Mech. Therm., 22(5), 345-362. https://doi.org/10.1007/s00161-010-0155-8.   DOI
41 Asgarian, B., Salari, N. and Saadati, B. (2016), "Application of intelligent passive devices based on shape memory alloys in seismic control of structures", Struct., 5, 161-169. https://doi.org/10.1016/j.istruc.2015.10.013.   DOI
42 Hashemi, A., Bagheri, H., Yousef-Beik, S.M.M., Darani, F.M., Valadbeigi, A., Zarnani, P. and Quenneville, P. (2020), "Enhanced seismic performance of timber structures using resilient connections: full-scale testing and design procedure", J. Struct. Eng., 146(9), 04020180. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002749.   DOI