Browse > Article
http://dx.doi.org/10.12989/sem.2021.79.5.531

A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage  

Tahar, Hassaine Daouadji (Civil Engineering Department, University of Tiaret)
Abderezak, Rabahi (Civil Engineering Department, University of Tiaret)
Rabia, Benferhat (Civil Engineering Department, University of Tiaret)
Publication Information
Structural Engineering and Mechanics / v.79, no.5, 2021 , pp. 531-540 More about this Journal
Abstract
In this paper, a closed-form solution for interfacial stresses in reinforced concrete damaged cantilever beam strengthened by bonded composite plate including the effect of the adherent shear deformations, the creep and shrinkage effect is presented. In such plated beams, tensile forces develop in the bonded plate, and these have to be transferred to the original beam via interfacial shear stresses. Consequently, debonding failure may occur at the plate ends due to a combination of high shear interfacial stress. The analysis is based on the deformation compatibility approach where the shear stress is assumed to be invariant across the adhesive layer thickness. In this study, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both the concrete beam and the bonded plate. The influence of creep and shrinkage effect relative to the time of the casting, and the time of the loading of the RC damaged cantilever beams is taken into account. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of interfacial stress distributions.
Keywords
composite plate; creep; interfacial stresses; RC beam; shear lag effect; shrinkage; strengthening;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tounsi, A., Daouadji, T.H. and Benyoucef, S. (2009), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhes. Adhesiv., 29(4), 343-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008.   DOI
2 Wang, Y H., Yu, J., Liu, J.P., Zhou, B.X. and Chen, Y.F. (2020), "Experimental study on assembled monolithic steel-prestressed concrete composite beam in negative moment", J. Constr. Steel Res., 167, 105667. https://doi.org/10.1016/j.jcsr.2019.06.004.   DOI
3 Yuan, C., Chen, W., Pham, T. M. and Hao, H. (2019), "Effect of aggregate size on bond behaviour between basalt fibre reinforced polymer sheets and concrete", Compos. Part B: Eng., 158, 459-474. https://doi.org/10.1016/j.compositesb.2018.09.089.   DOI
4 Zenzen, R., Khatir, S., Belaidi, I., Le Thanh, C. and Wahab, M. A. (2020), "A modified transmissibility indicator and Artificial Neural Network for damage identification and quantification in laminated composite structures", Compos. Struct., 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497.   DOI
5 Liu, S., Zhou, Y., Zheng, Q., Zhou, J., Jin, F. and Fan, H. (2019), "Blast responses of concrete beams reinforced with steel-GFRP composite bars", Struct., 22, 200-212. https://doi.org/10.1016/j.istruc.2019.08.010.   DOI
6 Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Meth. Appl. Sci., https://doi.org/10.1002/mma.7069.   DOI
7 Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.   DOI
8 Daouadji, T.H., Rabahi, A., Abbes, B. and Adim, B. (2016), "Theoretical and finite element studies of interfacial stresses in reinforced concrete beams strengthened by externally FRP laminates plate", J. Adhes. Sci. Technol., 30(12), 1253-1280. https://doi.org/10.1080/01694243.2016.1140703.   DOI
9 Das, O., Ozturk, H. and Gonenli, C. (2020), "Finite element vibration analysis of laminated composite parabolic thick plate frames", Steel Compos. Struct., 35(1), 43-59. http://doi.org/10.12989/scs.2020.35.1.043.   DOI
10 Guenaneche, B. and Tounsi, A. (2014), "Effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading", Int. J. Adhes. Adhesiv., 48, 1-13. https://doi.org/10.1016/j.ijadhadh.2013.09.016.   DOI
11 Mansouri, L., Djebbar, A., Khatir, S. and Wahab, M.A. (2019), "Effect of hygrothermal aging in distilled and saline water on the mechanical behaviour of mixed short fibre/woven composites", Compos. Struct., 207, 816-825. https://doi.org/10.1016/j.compstruct.2018.09.067.   DOI
12 Hadj, B., Rabia, B. and Daouadji, T.H. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: effect of the distribution shape of porosity", Coupl. Syst. Mech., 10(1), 61-77. http://doi.org/10.12989/csm.2021.10.1.061.   DOI
13 Abdelouahed, T. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solid. Struct., 43(14-15), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074.   DOI
14 Abderezak, R., Daouadji, T.H., Abbes, B., Rabia, B., Belkacem, A. and Abbes, F. (2017), "Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage", Adv. Mater. Res., 6(3), 257. http://doi.org/10.12989/amr.2017.6.3.257.   DOI
15 Abderezak, R., Daouadji, T.H. and Rabia, B. (2020), "Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate", Coupl. Syst. Mech., 9(5), 473-498. http://doi.org/10.12989/csm.2020.9.5.473.   DOI
16 Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Aluminum beam reinforced by externally bonded composite materials", Adv. Mater. Res., 10(1), 23-44. http://doi.org/10.12989/amr.2021.10.1.023.   DOI
17 Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Adv. Comput. Des., 6(2), 117. http://doi.org/10.12989/acd.2021.6.2.117.   DOI
18 Abderezak, R., Rabia, B., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2018), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Adv. Mater. Res., 7(2), 83. https://doi.org/10.12989/amr.2018.7.2.083.   DOI
19 Aicha, K., Rabia, B., Daouadji, T.H. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Coupl. Syst. Mech., 9(6), 575-597. http://doi.org/10.12989/csm.2020.9.6.575.   DOI
20 Akbas, S.D. (2018), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. http://doi.org/10.12989/sem.2018.67.4.337.   DOI
21 Smith, S.T. and Teng, J.G. (2001), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. http://doi.org/10.1016/S0141-0296(00)00090-0.   DOI
22 Rabia, B., Daouadji, T.H. and Abderezak, R. (2021), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41. http://doi.org/10.12989/cme.2021.3.1.041.
23 Tahar, H.D., Abderezak, R. and Rabia, B. (2020), "Flexural performance of wooden beams strengthened by composite plate", Struct. Monit. Mainten., 7(3), 233-259. http://doi.org/10.12989/smm.2020.7.3.233.   DOI
24 Tahar, H.D., Abderezak, R., Rabia, B. and Tounsi, A. (2021), "Impact of thermal effects in FRP-RC hybrid cantilever beams", Struct. Eng. Mech., 78(5), 573-583. http://doi.org/10.12989/sem.2021.78.5.573.
25 Mazars, J. and Pijaudier-Cabot, G. (1996), "From damage to fracture mechanics and conversely: A combined approach", Int. J. Solid. Struct., 33(20), 3327-3342. https://doi.org/10.1016/0020-7683(96)00015-7.   DOI
26 Mercan, K., Ebrahimi, F. and Civalek, O. (2020), "Vibration of angle-ply laminated composite circular and annular plates", Steel Compos. Struct., 34(1), 141-154. http://doi.org/10.12989/scs.2020.34.1.141.   DOI
27 Panjehpour, M., Farzadnia, N., Demirboga, R. and Ali, A.A.A. (2016), "Behavior of high-strength concrete cylinders repaired with CFRP sheets", J. Civil Eng. Manage., 22(1), 56-64. https://doi.org/10.3846/13923730.2014.897965.   DOI
28 Rabia, B., Tahar, H.D. and Abderezak, R. (2020), "Thermomechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Coupl. Syst. Mech., 9(6), 499-519. http://doi.org/10.12989/csm.2020.9.6.499.   DOI
29 Tahar, H.D., Abderezak, R., Rabia, B. and Tounsi, A. (2021), "Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses", Coupl. Syst. Mech., 10(2), 161. http://doi.org/10.12989/csm.2021.10.2.161.   DOI
30 Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. http://doi.org/10.12989/sem.2021.77.2.217.   DOI
31 Tahar, H.D., Tayeb, B., Abderezak, R. and Tounsi, A. (2021), "New approach of composite wooden beam-reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling", Struct. Eng. Mech., 78(3), 319-332. http://doi.org/10.12989/sem.2021.78.3.31.
32 Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., 3(1), 25. http://doi.org/10.12989/cme.2021.3.1.025.
33 Ali, Y.A.Z. (2018), "Flexural behavior of FRP strengthened concrete-wood composite beams", Ain Shams Eng. J., 9(4), 3419-3424. https://doi.org/10.1016/j.asej.2018.06.003.   DOI
34 Benachour, A., Benyoucef, S. and Tounsi, A. (2008), "Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate", Eng. Struct., 30(11), 3305-3315. https://doi.org/10.1016/j.engstruct.2008.05.007.   DOI
35 Benferhat, R., Daouadji, T.H. and Abderezak, R. (2021), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Struct. Eng. Mech., 3(1), 25. http://doi.org/10.12989/sem.2021.77.6.797.   DOI
36 Bensattalah, T., Daouadji, T.H. and Zidour, M. (2019), "Influences the shape of the floor on the behavior of buildings under seismic effect", International Symposium on Materials and Sustainable Development, Springer, Cham, November.
37 Antar, K., Amara, K., Benyoucef, S., Bouazza, M. and Ellali, M. (2019), "Hygrothermal effects on the behavior of reinforced-concrete beams strengthened by bonded composite laminate plates", Struct. Eng. Mech., 69(3), 327-334. https://doi.org/10.12989/sem.2019.69.3.327.   DOI
38 Chedad, A., Daouadji, T.H., Abderezak, R., Belkacem, A., Abbes, B., Rabia, B. and Abbes, F. (2017), "A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams", Adv. Mater. Res., 6(4), 317. https://doi.org/10.12989/amr.2017.6.4.317.   DOI
39 He, X.J., Zhou, C.Y. and Wang, Y. (2020), "Interfacial stresses in reinforced concrete cantilever members strengthened with fibrereinforced polymer laminates", Adv. Struct. Eng., 23(2), 277-288. https://doi.org/10.1177/1369433219868933.   DOI
40 Rabia, B., Daouadji, T.H. and Abderezak, R. (2020), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., 9(4), 265-287. http://doi.org/10.12989/amr.2020.9.4.265.   DOI
41 Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. http://doi.org/10.12989/scs.2020.35.5.659.   DOI