1 |
Kang, J.H. (2015), "Vibrations of truncated shallow and deep conical shells with non-uniform thickness", Struct. Eng. Mech., 55(1), 29-46. https://doi.org/10.12989/sem.2015.55.1.029.
DOI
|
2 |
Kiani, Y., Dimitri, R. and Tornabene, F. (2018), "Free vibration study of composite conical panels reinforced with FG-CNTs", Eng. Struct., 172, 472-82. https://doi.org/10.1016/j.engstruct.2018.06.006.
DOI
|
3 |
Lam, K.Y. and Hua, L. (1999), "Influence of boundary conditions on the frequency characteristics of a rotating truncated circular conical shell", J. Sound, Vib., 223(2), 171-195. https://doi.org/10.1006/jsvi.1998.1432.
DOI
|
4 |
Li, F.M., Kishimoto, K. and Huang, W.H. (2009), "The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh-Ritz method", Mech. Res. Commun., 36(5), 595-602. https://doi.org/10.1016/j.mechrescom.2009.02.003.
DOI
|
5 |
Mohammadi, Y. and Rahmani, M. (2020), "Temperature-dependent buckling analysis of functionally graded sandwich cylinders", J. Solid Mech., 12(1), 1-15. https://doi.org/10.22034/jsm.2020.670341.
DOI
|
6 |
Sofiyev, A.H. (2016), "Parametric vibration of FGM conical shells under periodic lateral pressure within the shear deformation theory", Compos. Part B-Eng., 89, 282-294. https://doi.org/10.1016/j.compositesb.2015.11.017.
DOI
|
7 |
Song, Z., Cao, Q. and Dai, Q. (2019), "Free vibration of truncated conical shells with elastic boundary constraints and added mass", Int. J. Mech. Sci., 155, 286-294. https://doi.org/10.1016/j.ijmecsci.2019.02.039.
DOI
|
8 |
Najafov, A.M., Sofiyev, A.H. and Kuruoglu, N. (2014), "On the solution of nonlinear vibration of truncated conical shells covered by functionally graded coatings", Acta Mech., 225(2), 563-80. https://doi.org/10.1007/s00707-013-0980-5.
DOI
|
9 |
Rahmani, M., Mohammadi, Y. and Kakavand, F. (2019a), "Vibration analysis of different types of porous FG circular sandwich plates", ADMT J., 12(3), 63-75.
|
10 |
Rahmani, M., Mohammadi, Y., Kakavand, F. and Raeisifard, H. (2020b), "Vibration analysis of different types of porous FG conical sandwich shells in various thermal surroundings", J. Appl. Comput. Mech., 6(3), 416-432. https://doi.org/10.22055/jacm.2019.29442.1598.
DOI
|
11 |
Tornabene, F., Viola, E. and Inman, D.J. (2009), "2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures", J. Sound. Vib., 328(3), 259-290. https://doi.org/10.1016/j.jsv.2009.07.031.
DOI
|
12 |
Kwak, M.K., Koo, J.R. and Bae, C.H. (2011), "Free vibration analysis of a hung clamped-free cylindrical shell partially submerged in fluid", J. Fluid. Struct., 27(2), 283-296. https://doi.org/10.1016/j.jfluidstructs.2010.11.005.
DOI
|
13 |
Su, Z., Jin, G., Shi, S., Ye, T. and Jia, X. (2014a), "A unified solution for vibration analysis of functionally graded cylindrical, conical shells and annular plates with general boundary conditions", Int. J. Mech. Sci., 80, 62-80. https://doi.org/10.1016/j.ijmecsci.2014.01.002.
DOI
|
14 |
Singha, T.D., Rout, M., Bandyopadhyay, T. and Karmakar, A. (2020), "Free vibration analysis of rotating pretwisted composite sandwich conical shells with multiple debonding in hygrothermal environment", Eng. Struct., 204, 110058. https://doi.org/10.1016/j.engstruct.2019.110058.
DOI
|
15 |
Sofiyev, A.H. (2019), "Review of research on the vibration and buckling of the FGM conical shells", Compos. Struct., 211, 301-317. https://doi.org/10.1016/j.compstruct.2018.12.047.
DOI
|
16 |
Sofiyev, A.H. and Osmancelebioglu, E. (2017), "The free vibration of sandwich truncated conical shells containing functionally graded layers within the shear deformation theory", Compos. Part B-Eng., 120, 197-211. https://doi.org/10.1016/j.compositesb.2017.03.054.
DOI
|
17 |
Soureshjani, A.H., Talebitooti, R. and Talebitooti, M. (2020), "A semi-analytical approach on the effect of external lateral pressure on free vibration of joined sandwich aerospace composite conical-conical shells", Aerosp. Sci. Technol., 99, 105559. https://doi.org/10.1016/j.ast.2019.105559.
DOI
|
18 |
Su, Z., Jin, G. and Ye, T. (2014b), "Three-dimensional vibration analysis of thick functionally graded conical, cylindrical shell and annular plate structures with arbitrary elastic restraints", Compos. Struct., 118, 432-447. https://doi.org/10.1016/j.compstruct.2014.07.049.
DOI
|
19 |
Talebitooti, M. (2018), "Thermal effect on free vibration of ring-stiffened rotating functionally graded conical shell with clamped ends", Mech. Adv. Mater. Struct., 25(2), 155-165. https://doi.org/10.1080/15376494.2016.1255809.
DOI
|
20 |
Sofiyev, A.H. (2018), "Application of the first order shear deformation theory to the solution of free vibration problem for laminated conical shells", Compos. Struct., 188, 340-346. https://doi.org/10.1016/j.compstruct.2018.01.016.
DOI
|
21 |
Qin, B., Zhong, R., Wang, T., Wang, Q., Xu, Y. and Hu, Z. (2020), "A unified Fourier series solution for vibration analysis of FG-CNTRC cylindrical, conical shells and annular plates with arbitrary boundary conditions", Compos. Struct., 232, 111549. https://doi.org/10.1016/j.compstruct.2019.111549.
DOI
|
22 |
Shakouri, M. (2019), "Free vibration analysis of functionally graded rotating conical shells in thermal environment", Compos. Part B-Eng., 163, 574-584. https://doi.org/10.1016/j.compositesb.2019.01.007.
DOI
|
23 |
Viswanathan, K.K., Saira J. and Abdul Aziz, Z. (2013), "Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness under shear deformation theory", Struct. Eng. Mech., 45(2), 259-275. https://doi.org/10.12989/sem.2013.45.2.259.
DOI
|
24 |
Xiang, P., Xia, Q., Jiang, L.Z., Peng, L., Yan, J.W. and Liu, X. (2021), "Free vibration analysis of FG-CNTRC conical shell panels using the kernel particle Ritz element-free method", Compos. Struct., 255, 112987. https://doi.org/10.1016/j.compstruct.2020.112987.
DOI
|
25 |
Xie, X., Jin, G., Ye, T. and Liu, Z. (2014), "Free vibration analysis of functionally graded conical shells and annular plates using the Haar wavelet method", Appl. Acoust., 85, 130-142. https://doi.org/10.1016/j.apacoust.2014.04.006.
DOI
|
26 |
Ng, T.Y., Li, H. and Lam, K.Y. (2003), "Generalized differential quadrature for free vibration of rotating composite laminated conical shell with various boundary conditions", Int. J. Mech. Sci., 45(3), 567-587. https://doi.org/10.1016/S0020-7403(03)00042-0.
DOI
|
27 |
Mouli, B.C., Kar, V.R., Ramji, K. and Rajesh, M. (2018), "Free vibration of functionally graded conical shell", Mater. Today: Proc., 5(6), 14302-14308. https://doi.org/10.1016/j.matpr.2018.03.012.
DOI
|
28 |
Amabili, M. and Balasubramanian, P. (2020), "Nonlinear vibrations of truncated conical shells considering multiple internal resonances", Nonlin. Dyn., 6, 1-17. https://doi.org/10.1007/s11071-020-05507-8.
DOI
|
29 |
Zhao, J., Choe, K., Shuai, C., Wang, A. and Wang, Q. (2019), "Free vibration analysis of functionally graded carbon nanotube reinforced composite truncated conical panels with general boundary conditions", Compos. Part B: Eng., 160, 225-240. https://doi.org/10.1016/j.compositesb.2018.09.105.
DOI
|
30 |
Permoon, M.R., Shakouri, M. and Haddadpour, H. (2019), "Free vibration analysis of sandwich conical shells with fractional viscoelastic core", Compos. Struct., 214, 62-72. https://doi.org/10.1016/j.compstruct.2019.01.082.
DOI
|
31 |
Rahmani, M., Mohammadi, Y. and Kakavand, F. (2020a), "Buckling analysis of different types of porous FG conical sandwich shells in various thermal surroundings", J. Brazil. Soc. Mech. Sci., 42(4), 1-16. https://doi.org/10.1007/s40430-020-2200-2.
DOI
|
32 |
Zarei, M., Rahimi, G.H. and Hemmatnezhad, M. (2020), "Free vibrational characteristics of grid-stiffened truncated composite conical shells", Aerosp. Sci. Technol., 99, 105717. https://doi.org/10.1016/j.ast.2020.105717.
DOI
|
33 |
Bahrami, M.N. (2004), "Vibration theory and its application in engineering", University of Tehran, Tehran.
|
34 |
Bakhtiari, M., Lakis, A.A. and Kerboua, Y. (2020), "Nonlinear vibration of truncated conical shells: Donnell, Sanders and Nemeth theories", Int. J. Nonlin. Sci. Numer. Simul., 21(1), 83-97. https://doi.org/10.1515/ijnsns-2018-0377.
DOI
|
35 |
Rahmani, M. and Dehghanpour, S. (2020), "Temperaturedependent vibration of various types of sandwich beams with porous FGM layers", Int. J. Struct. Stab. Dyn., 21(02), 2150016. https://doi.org/10.1142/S0219455421500164.
DOI
|
36 |
Rahmani, M., Mohammadi, Y. and Kakavand, F. (2019b), "Vibration analysis of sandwich truncated conical shells with porous FG face sheets in various thermal surroundings", Steel. Compos. Struct., 32(2), 239-352. https://doi.org/10.12989/scs.2019.32.2.239.
DOI
|
37 |
Aris, H. and Ahmadi, H. (2020), "Nonlinear vibration analysis of FGM truncated conical shells subjected to harmonic excitation in thermal environment", Mech. Res. Commun., 104, 103499. https://doi.org/10.1016/j.mechrescom.2020.103499.
DOI
|
38 |
Fard, K.M. and Livani, M. (2015), "New enhanced higher order free vibration analysis of thick truncated conical sandwich shells with flexible cores", Struct. Eng. Mech., 55(4), 719-742. https://doi.org/10.12989/sem.2015.55.4.719.
DOI
|
39 |
Fazzolari, F.A. (2017), "Sandwich structures.", Stab. Vib. Thin Wall. Compos. Struct., 49-90. https://doi.org/10.1016/B978-0-08-100410-4.00002-8.
DOI
|
40 |
Frostig, Y.B., Baruch, M., Vilnay, O. and Sheinman, I. (1992), "High-order theory for sandwich-beam behavior with transversely flexible core", J. Eng. Mech., 118(5), 1026-43. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:5(1026).
DOI
|
41 |
Javed, S., Viswanathan, K.K., Aziz, Z.A. and Lee, J.H. (2016), "Vibration analysis of a shear deformed anti-symmetric angleply conical shells with varying sinusoidal thickness", Struct. Eng. Mech., 58(6), 1001-1020. https://doi.org/10.12989/sem.2016.58.6.1001.
DOI
|
42 |
Reddy, J.N. (1998), "Thermomechanical behavior of functionally graded materials", Dept. of Mechanical Engineering, Texas A&M Univ. College Station.
|
43 |
Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells, Theory and Application, CRC Press, New York.
|
44 |
Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. https://doi.org/10.1016/j.compstruct.2014.06.023.
DOI
|
45 |
Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel. Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/scs.2020.35.2.249.
DOI
|
46 |
Irie, T., Yamada, G. and Tanaka, K. (1984), "Natural frequencies of truncated conical shells", J. Sound, Vib., 92(3), 447-453. https://doi.org/10.1016/0022-460X(84)90391-2.
DOI
|