1 |
Krassowska, J., Kosior-Kazberuk, M. and Berkowski, P. (2019), "Shear behavior of two-span fiber reinforced concrete beams", Arch. Civil Mech. Eng., 19, 1442-1457. https://doi.org/10.1016/j.acme.2019.09.005.
DOI
|
2 |
Yang, Y. (2014), "Shear behaviour of reinforced concrete members without shear reinforcement: a new look at an old problem", TU Delft, Delft University of Technology.
|
3 |
ACI318-02 (2002), ACI Manual of Concrete Practice, Part 3-02: American Concrete Institute, Farmington Hills, MI, USA.
|
4 |
Alengaram, U.J., Jumaat, M.Z. and Mahmud, H. (2008), "Influence of cementitious materials and aggregates content on compressive strength of palm kernel shell concrete", J. Appl. Sci., 8(18), 3207-3213.
DOI
|
5 |
Aslam, M., Shafigh, P. and Jumaat, M.Z. (2016a), "Drying shrinkage behaviour of structural lightweight aggregate concrete containing blended oil palm bio-products", J. Clean. Prod., 127, 183-194. https://doi.org/10.1016/j.jclepro.2016.03.165.
DOI
|
6 |
Aslam, M., Shafigh, P., Jumaat, M.Z. and Lachemi, M. (2016), "Benefits of using blended waste coarse lightweight aggregates in structural lightweight aggregate concrete", J. Clean. Prod., 119, 108-117. https://doi.org/10.1016/j.jclepro.2016.01.071.
DOI
|
7 |
Bukhari, I.A. and Ahmad, S. (2008), "Evaluation of shear strength of high-strength concrete beams without stirrups", Arab. J. Sci. Eng., 33(2), 321.
|
8 |
Clarke, J.L. (1987), "Shear strength of lightweight aggregate concrete beams: design to bs 8 l 10", Mag. Concrete Res., 39(141), 205-213. https://doi.org/10.1680/macr.1987.39.141.205.
DOI
|
9 |
Li, X., Dai, J. and Deng, M. (2021), "Shear behavior of high ductile fiber reinforced concrete beams", Alex. Eng. J., 60(1), 1665-1675. https://doi.org/10.1016/j.aej.2020.11.017.
DOI
|
10 |
Mohammed, B.S., Hossain, K.M.A., Foo, W.L. and Abdullahi, M. (2013), "Shear strength of palm oil clinker concrete beams", Mater. Des., 46, 270-276. https://doi.org/10.1016/j.matdes.2012.10.021.
DOI
|
11 |
CEB-Manual (1985), Cracking and Deformations, Ecole Polytechnique Federale de Lausanne, London, UK.
|
12 |
Weigler, H. and Karl, S. (1980), "Structural lightweight aggregate concrete with reduced density-lightweight aggregate foamed concrete", Int. J. Cement Compos. Lightweight Concrete, 2(2), 101-104. https://doi.org/10.1016/0262-5075(80)90029-9.
DOI
|
13 |
ACI224.1R-07 (2007), Causes, Evaluation, and Repair of Cracks in Concrete Structures, American Concrete Institute (ACI) Manual of Concrete Practice, Farmington Hills, MI, USA.
|
14 |
EN2. (2004), Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, BS EN 1992-1-1, London: British Standards Institution, UK.
|
15 |
Gergely, P. and Lutz, L. (1973), "Maximum crack width in reinforced concrete flexural members, causes, mechanism and control of cracking in concrete", ACI Publication SP-20, American Concrete Institute, Detroit, MI, USA.
|
16 |
Jumaat, M.Z., Alengaram, U.J. and Mahmud, H. (2009), "Shear strength of oil palm shell foamed concrete beams", Mater. Des., 30(6), 2227-2236. https://doi.org/10.1016/j.matdes.2008.09.024.
DOI
|
17 |
Keskin, R.S.O. (2017), "Predicting shear strength of SFRC slender beams without stirrups using an ANN model", Struct. Eng. Mech., 61(5), 605-615. http://doi.org/10.12989/sem.2017.61.5.605.
DOI
|
18 |
Mahmud, H., Jumaat, M.Z. and Alengaram, U.J. (2009), "Influence of sand/cement ratio on mechanical properties of palm kernel shell concrete", J. Appl. Sci., 9(9), 1764-1769.
DOI
|
19 |
Khan, U., Al-Osta, M.A. and Ibrahim, A. (2017), "Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets", Struct. Eng. Mech., 61(1), 125-142. http://doi.org/10.12989/sem.2017.61.1.125.
DOI
|
20 |
Kong, F.K. and Evans, R.H. (1998), Reinforced and Prestressed Concrete, CRC Press, London, United Kingdom.
|
21 |
Mannan, M.A., Basri, H.B., Zain, M.F.M, and Islam, M.N. (2002), "Effect of curing conditions on the properties of OPS-concrete", Build. Environ., 37(11), 1167-1171. https://doi.org/10.1016/S0360-1323(01)00078-6.
DOI
|
22 |
Morsch, E. (1909), Concrete Steel Construction (Der Eisenbetonbau), English Translation of the 3rd German Edition, McGraw-Hill Book Co., New York, USA.
|
23 |
Mosley, W.H., Hulse, R. and Bungey, J.H. (2012), Reinforced Concrete Design: to Eurocode 2, 6th Edition, Palgrave Macmillan, New York, USA, UK.
|
24 |
ACI318R-05 (2005), Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (318R-05), American Concrete Institute, Farmington Hills, USA.
|
25 |
Aslam, M., Shafigh, P., Nomeli, M.A. and Jumaat, M.Z. (2017a), "Manufacturing of high-strength lightweight aggregate concrete using blended coarse lightweight aggregates", J. Build. Eng., 13, 53-62. https://doi.org/10.1016/j.jobe.2017.07.002.
DOI
|
26 |
Al Mahmoud, F., Boissiere, R., Mercier, C. and Khelil, A. (2020), "Shear behavior of reinforced concrete beams made from recycled coarse and fine aggregates", Struct., 25, 660-669. https://doi.org/10.1016/j.istruc.2020.03.015.
DOI
|
27 |
Alengaram, U.J., Jumaat, M.Z., Mahmud, H. and Fayyadh, M.M. (2011), "Shear behaviour of reinforced palm kernel shell concrete beams", Constr. Build. Mater., 25(6), 2918-2927. https://doi.org/10.1016/j.conbuildmat.2010.12.032.
DOI
|
28 |
Alqarni, A.S., Albidah, A.S., Alaskar, A.M. and Abadel, A.A. (2020), "The effect of coarse aggregate characteristics on the shear behavior of reinforced concrete slender beams", Constr. Build. Mater., 264, 120189. https://doi.org/10.1016/j.conbuildmat.2020.120189.
DOI
|
29 |
Aslam, M., Shafigh, P. and Jumaat, M.Z. (2016b), "Oil-palm by-products as lightweight aggregate in concrete mixture: A review", J. Clean. Prod., 126, 56-73. https://doi.org/10.1016/j.jclepro.2016.03.100.
DOI
|
30 |
Aslam, M., Shafigh, P. and Jumaat, M.Z. (2017), "High strength lightweight aggregate concrete using blended coarse lightweight aggregate origin from palm oil industry", Sains Malaysiana, 46(4), 667-675. http://dx.doi.org/10.17576/jsm-2017-4604-20.
DOI
|
31 |
Bazant, Z.P. and Kim, J.K. (1984), "Size effect in shear failure of longitudinally reinforced beams", ACI J., 81(5), 456-468.
|
32 |
CEB/FIP-90 (1993), Committee Euro-International du Beton (CEB-FIP), Thomas Telford, London, UK.
|
33 |
Clarke, J.L. (2002), Structural Lightweight Aggregate Concrete, Taylor & Francis e-Library, CRC Press, London, UK.
|
34 |
CSA-A23.3. (2004), Design of Concrete Structures (CSA A23.3-04), Canadian Standards Association, Mississauga, ON, Canada, pp. 214.
|
35 |
Okpala, D. (1990), "Palm kernel shell as a lightweight aggregate in concrete", Build. Environ., 25(4), 291-296. https://doi.org/10.1016/0360-1323(90)90002-9.
DOI
|
36 |
Wight, J. and MacGregor, J. (2009), Reinforced Concrete: Mechanics and Design, Vol. 6 Edition, Prentice Hall Upper Saddle River, NJ, USA.
|
37 |
Shafigh, P., Jumaat, M.Z., Mahmud, H.B, and Alengaram, U.J. (2011), "A new method of producing high strength oil palm shell lightweight concrete", Mater. Des., 32(10), 4839-4843. https://doi.org/10.1016/j.matdes.2011.06.015.
DOI
|
38 |
Reineck, K.H., Kuchma, D.A., Kim, K.S. and Marx, S. (2003), "Shear database for reinforced concrete members without shear reinforcement", ACI Struct. J., 100(2), 240-249.
|