Browse > Article
http://dx.doi.org/10.12989/sem.2021.79.1.067

An improved incompatible DST element using free formulation approach  

Katili, Irwan (Civil Engineering Department, Universitas Indonesia)
Publication Information
Structural Engineering and Mechanics / v.79, no.1, 2021 , pp. 67-81 More about this Journal
Abstract
This study proposes DSTK, a new incompatible triangular element formulated from a combination of discrete shear constraints, independent transverse shear strains and a free formulation approach. DSTK takes into account transverse shear effects and is valid for thin and thick plates. Furthermore, this element has 3 nodes and 3 DOFs per node (transverse displacement w and rotations βx and βy). The couple between lower order and higher order bending energy is assumed to be zero to fulfil the constant bending patch test. Unifying and integrating kinematic relationship, constitutive law, and equilibrium equations contribute to the independent transverse shear strain expression, which comprises merely the second derivatives of the rotations. The study performs validation based on individual element tests, patch tests, and convergence tests. This study shows that the DSTK element yields good results of various classical benchmark tests for thin to thick plates.
Keywords
discrete shear; DST; DSTK; DSTK+; free formulation; incompatible element; independent transverse shear strain;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Katili, I., Maknun, I.J., Batoz, J.L. and Katili, A.M. (2019a), "A comparative formulation of T3γs, DST, DKMT and MITC3+ triangular plate elements with new numerical results based on s-norm tests", Eur. J. Mech./A Solid., 78, 103826. https://doi.org/10.1016/j.euromechsol.2019.103826   DOI
2 Kirchhoff, G. (1950), "Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe", J. Reine Angew. Math., 40, 51-58.
3 Lee, P.S. and Bathe, K.J. (2004), "Development of MITC isotropic triangular shell finite elements", Comput. Struct., 82, 945-962. https://doi.org/10.1016/j.compstruc.2004.02.004.   DOI
4 Lee, Y., Jeon, H.M., Lee, P.S. and Bathe, K.J. (2015), "The modal behavior of the MITC3+ triangular shell element", Comput. Struct., 153, 148-164. https://doi.org/10.1016/j.compstruc.2015.02.033.   DOI
5 Lee, Y., Lee, P.S. and Bathe, K.J. (2014), "The MITC3+ shell element and its performance", Comput. Struct., 138, 12-23. https://doi.org/10.1016/j.compstruc.2014.02.005.   DOI
6 Lee, Y., Yoon, K. and Lee, P.S. (2012), "Improving the MITC3 shell finite element by using the Hellinger-Reissner principle", Comput. Struct., 110, 93-106. https://doi.org/10.1016/j.compstruc.2012.07.004.   DOI
7 Liew, K.M. and Han, J.B. (1997), "Bending analysis of simply supported shear deformable skew plates", J. Eng. Mech., 123, 214-221. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(214).   DOI
8 MacNeal, R.H. (1982), "Derivation of element stiffness matrices by assumed strain distributions", Nucl. Eng. Des., 70, 3-12. https://doi.org/10.1016/0029-5493(82)90262-X.   DOI
9 Razzaque, A. (1973), "Program for triangular bending elements with derivative smoothing", Int. J. Numer. Meth. Eng., 6, 333-345. https://doi.org/10.1002/nme.1620060305.   DOI
10 Lardeur, P. and Batoz, J.L. (1989), "Composite plate analysis using a new discrete shear triangular plate bending element", Int. J. Numer. Meth. Eng., 27, 343-360. https://doi.org/10.1002/nme.1620270209.   DOI
11 Batoz, J.L., Bathe, K.J. and Ho, L.W. (1980), "A study of three-node triangular plate bending elements", Int. J. Numer. Meth. Eng., 15, 1771-1812. https://doi.org/10.1002/nme.1620151205.   DOI
12 Batoz, J.L. and Dhatt, G. (1990), Modelisation des Structures par Element Finis, Volume 2: Poutres et Plaques, Hermes, Paris, France.
13 Batoz, J.L. and Katili, I. (1992), "On a simple triangular Reissner Mindlin plate element based on incompatible modes and discrete constraints", Int. J. Numer. Meth. Eng., 3, 1603-1632. https://doi.org/10.1002/nme.1620350805.   DOI
14 Batoz, J.L. and Lardeur, P. (1989), "A discrete shear triangular nine dof element for the analysis of thick to very thin plates", Int. J. Numer. Meth. Eng., 28, 533-560. https://doi.org/10.1002/nme.1620280305.   DOI
15 Bergan, P.G. (1980), "Finite elements based on energy orthogonal functions", Int. J. Numer. Meth. Eng., 15. 1541-1555. https://doi.org/10.1002/nme.1620151009.   DOI
16 Dinh, T.C., Duy, Q.N. and Xuan, H.N. (2017a), "Improvement on MITC3 plate finite element using edge-based strain smoothing enhancement for plate analysis", Acta Mechanica, 228, 2141-2163. https://doi.org/10.1007/s00707-017-1818-3.   DOI
17 Katili, A.M., Maknun, I.J. and Katili, I. (2019b), "Theoretical equivalence and numerical performance of T3γs and MITC3 plate finite elements", Struct. Eng. Mech., 69, 527-536. https://doi.org/10.12989/sem.2019.69.5.527.   DOI
18 Katili, I., Aristio, R. and Setyanto, S.B. (2020), "Isogeometric collocation method to solve the strong form equation of UI-RM Plate Theory", Struct. Eng. Mech., 76, 435-449. https://doi.org/10.12989/sem.2020.76.4.435.   DOI
19 Lee, P.S., Noh, H.C. and Bathe, K.J. (2007), "Insight into 3-node triangular shell finite elements: the effect of element isotropy and mesh pattern", Comput. Struct., 85, 404-418. https://doi.org/10.1016/j.compstruc.2006.10.006.   DOI
20 Mindlin, R.D. (1951), "Influence of rotation inertia and shear on flexural motion of isotropic elastic plates", J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217.   DOI
21 Katili, I., Maknun, I.J., Batoz, J.L. and Katili, A.M. (2018), "Asymptotic equivalence of DKMT and MITC3 elements for Thick Compos. Plates, 206, 363-379. https://doi.org/10.1016/j.compstruct.2018.08.017   DOI
22 Hughes, T.J.R. and Taylor, R.L. (1982), "The linear triangle bending elements", The Mathematics of Finite Element and Application IV, MAFELAP, Academic Press, London.
23 Sengupta, D. (1995), "Performance study of a simple finite element in the analysis of skew rhombic plates", Comput. Struct., 54, 1173-82. https://doi.org/10.1016/0045-7949(94)00405-R.   DOI
24 Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields- part I: An extended DKT element for thick plate bending analysis", Int. J. Numer. Meth. Eng., 36, 1859-1883. https://doi.org/10.1002/nme.1620361107.   DOI
25 Dinh, T.C., Duc, T.T., Trung, K.N. and Van, H.N. (2017b), "A node-based mitc3 element for analyses of laminated composite plates using the higher-order shear deformation theory", Proceedings of the International Conference on Advances in Computational Mechanics, 409-429.
26 Morley, L.S.D. (1963), Skew Plates and Structures, Pergamon Press, New York, USA.
27 Nguyen, T.K., Nguyen, V.H. and Dinh, T.C. (2018), "Cell- and node-based smoothing mitc3-finite elements for static and free vibration analysis of laminated composite and functionally graded plates", Int. J. Comput. Meth., 15(03), 1850123. https://doi.org/10.1142/S0219876218501232.   DOI
28 Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech. Eng., ASME, 12, A69-A77. https://doi.org/10.1115/1.4009435.   DOI
29 Maknun, I.J., Katili, I., Ibrahimbegovic, A. and Katili, A.M. (2020), "A new triangular shell element for composites accounting for shear deformation", Comput. Struct., 243, 112214. https://doi.org/10.1016/j.compstruct.2020.112214.   DOI