Browse > Article
http://dx.doi.org/10.12989/sem.2021.79.1.001

A dual-phase-lag theory of thermal wave in a porothermoelastic nanoscale material by FEM  

Saeed, Tareq (Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Mathematics Department, King Abdulaziz University)
Abbas, Ibrahim (Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Mathematics Department, King Abdulaziz University)
Publication Information
Structural Engineering and Mechanics / v.79, no.1, 2021 , pp. 1-8 More about this Journal
Abstract
In the current article, the dual phase lag theory is used to discussed the waves propagations in poroelastic nanoscale materials by the finite element method. Using the FEM to get the solutions of the complex formulation of the problem numerically. The numerical accuracy is further improved by the implementation of quadratic interpolation functions. The impacts of the thermal delay time and the porosity in a porothermal and elastic mediums are studied. The numerical outcomes for the components of displacement, the temperatures and the components of stress for the solid and liquid are represented graphically. Three theories of thermoelasticity viz. the Classical dynamical coupled (CT), Lord and Shulman (LS), and dual-phase-lag (DPL) thermoelasticity theories are considered in this problem. the present analysis may have significant application and contribution in areas utilizing the non-simples porothermoelastic with various phases in details.
Keywords
dual-phase-lag model; finite element method; poro-thermo-elastic medium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation", Steel Compos. Struct., 32(6), 779-793. http://doi.org/10.12989/scs.2019.32.6.779.   DOI
2 Lata, P. and Singh, S. (2020), "Plane wave propagation in a nonlocal magneto-thermoelastic solid with two temperature and Hall current", Wave. Rand. Complex Media, 1-27. https://doi.org/10.1080/17455030.2020.1838667.   DOI
3 Lata, P. and Singh, S. (2020), "Time harmonic interactions in non local thermoelastic solid with two temperatures", Struct. Eng. Mech., 74, 341-350. http://doi.org/10.12989/sem.2020.74.3.341.   DOI
4 Lata, P. and Singh, S. (2021), "Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer", Steel Compos. Struct., 38(2), 141. http://doi.org/10.12989/scs.2021.38.2.141.   DOI
5 Saeed, T., Abbas, I. and Marin, M. (2020), "A GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3), 488. https://doi.org/10.3390/sym12030488.   DOI
6 Tzou, D.Y. (1995), "Unified field approach for heat conduction from macro- to micro-scales", J. Heat Transf., 117(1), 8-16. https://doi.org/10.1115/1.2822329.   DOI
7 Youssef, H. (2007), "Theory of generalized porothermoelasticity", Int. J. Rock Mech. Min. Sci., 44(2), 222-227. https://doi.org/10.1016/j.ijrmms.2006.07.001.   DOI
8 Singh, B. (2013), "Reflection of plane waves from a free surface of a porothermoelastic solid half-space", J. Porous Media, 16(10). https://doi.org/10.1615/JPorMedia.v16.i10.60.   DOI
9 Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties", Meccanica, 49(7), 1697-1708. https://doi.org/10.1007/s11012-014-9948-3.   DOI
10 Abbas, I.A. and Zenkour, A.M. (2013), "LS model on electro-magneto-thermoelastic response of an infinite functionally graded cylinder", Compos. Struct., 96 89-96. https://doi.org/10.1016/j.compstruct.2012.08.046.   DOI
11 Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. http://doi.org/10.12989/scs.2016.22.2.369.   DOI
12 Abbas, I.A. and Zenkour, A.M. (2014), "Dual-phase-lag model on thermoelastic interactions in a semi-infinite medium subjected to a ramp-type heating", J. Comput. Theor. Nanos., 11(3), 642-645. https://doi.org/10.1166/jctn.2014.3407.   DOI
13 Abd-Elaziz, E.M., Marin, M. and Othman, M.I. (2019), "On the effect of Thomson and initial stress in a thermo-porous elastic solid under GN electromagnetic theory", Symmetry, 11(3), 413. https://doi.org/10.3390/sym11030413.   DOI
14 Alzahrani, F.S. and Abbas, I.A. (2020), "Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux", Geomech. Eng., 23, 217-225. http://doi.org/10.12989/gae.2020.23.3.217.   DOI
15 Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.   DOI
16 Tzou, D.Y. (1995), "Experimental support for the lagging behavior in heat propagation", J. Thermophys. Heat Transf., 9(4), 686-693. https://doi.org/10.2514/3.725.   DOI
17 Green, A. and Naghdi, P. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136.   DOI
18 Marin, M. (2010), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045.   DOI
19 McTigue, D. (1986), "Thermoelastic response of fluid-saturated porous rock", J. Geophys. Res.: Solid Earth, 91(B9), 9533-9542. https://doi.org/10.1029/JB091iB09p09533.   DOI
20 Mohamed, R., Abbas, I.A. and Abo-Dahab, S. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Commun. Nonlin. Sci. Numer. Simul., 14(4), 1385-1395. https://doi.org/10.1016/j.cnsns.2008.04.006.   DOI
21 Singh, B. (2007), "Wave propagation in a generalized thermoelastic material with voids", Appl. Math. Comput., 189(1), 698-709. https://doi.org/10.1016/j.amc.2006.11.123.   DOI
22 Singh, B. (2011), "On propagation of plane waves in generalized porothermoelasticity", Bul. Seismol. Soc. Am., 101(2), 756-762. https://doi.org/10.1785/0120100091.   DOI
23 Singh, B. (2018), "On Rayleigh wave in a generalized porothermoelastic solid half-space", Res. J. Eng. Technol., 9(2), 179-188. https://doi.org/10.5958/2321-581X.2018.00025.9.   DOI
24 Abbas, I.A. and Youssef, H.M. (2012), "A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method", Int. J. Thermophys., 33(7), 1302-1313. https://doi.org/10.1007/s10765-012-1272-3.   DOI
25 Vinyas, M., Harursampath, D. and Kattimani, S. (2020), "Thermal response analysis of multi-layered magneto-electro-thermoelastic plates using higher order shear deformation theory", Struct. Eng. Mech., 73, 667-684. http://doi.org/10.12989/sem.2020.73.6.667.   DOI
26 Vlase, S., Marin, M., Ochsner, A. and Scutaru, M. (2019), "Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system", Continuum Mech. Thermodyn., 31(3), 715-724. https://doi.org/10.1007/s00161-018-0722-y.   DOI
27 Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.   DOI
28 Kumar, R. and Abbas, I.A. (2013), "Deformation due to thermal source in micropolar thermoelastic media with thermal and conductive temperatures", J. Comput. Theor. Nanosci., 10(9), 2241-2247. https://doi.org/10.1166/jctn.2013.3193.   DOI
29 Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103.   DOI
30 Abbas, I.A. and Abo-Dahab, S. (2014), "On the numerical solution of thermal shock problem for generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", J. Comput. Theor. Nanosci., 11(3), 607-618. https://doi.org/10.1016/j.apm.2011.02.028.   DOI
31 Green, A. and Naghdi, P. (1993), "Thermoelasticity without energy dissipation", J. Elastic., 31(3), 189-208. https://doi.org/10.1007/BF00044969.   DOI
32 Abbas, I.A. and Alzahrani, F.S. (2016), "Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse", Steel Compos. Struct., 21(4), 791-803. https://doi.org/10.12989/scs.2016.21.4.791.   DOI
33 Abbas, I.A. and Kumar, R. (2014), "Deformation due to thermal source in micropolar generalized thermoelastic half-space by finite element method", J. Comput. Theor. Nanosci., 11(1), 185-190. https://doi.org/10.1166/jctn.2014.3335.   DOI
34 Abbas, I.A. and Othman, M.I. (2012), "Generalized thermoelastic interaction in a fiber-reinforced anisotropic half-space under hydrostatic initial stress", J. Vib. Control, 18(2), 175-182. https://doi.org/10.1177/1077546311402529.   DOI
35 El-Naggar, A., Kishka, Z., Abd-Alla, A., Abbas, I., Abo-Dahab, S. and Elsagheer, M. (2013), "On the initial stress, magnetic field, voids and rotation effects on plane waves in generalized thermoelasticity", J. Comput. Theor. Nanosci., 10(6), 1408-1417. https://doi.org/10.1166/jctn.2013.2862.   DOI
36 Ezzat, M. and Ezzat, S. (2016), "Fractional thermoelasticity applications for porous asphaltic materials", Petrol. Sci., 13(3), 550-560. https://doi.org/10.1007/s12182-016-0094-5.   DOI
37 Kaur, I., Lata, P. and Singh, K. (2020), "Reflection of plane harmonic wave in rotating media with fractional order heat transfer", Adv. Mater. Res., 9(4), 289. http://doi.org/10.12989/amr.2020.9.4.289.   DOI
38 Hobiny, A.D. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimension medium with voids", Geomech. Eng., 21, 85-93. http://doi.org/10.12989/gae.2020.21.1.085.   DOI
39 Itu, C., Ochsner, A., Vlase, S. and Marin, M.I. (2019), "Improved rigidity of composite circular plates through radial ribs", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 233(8), 1585-1593. https://doi.org/10.1177/1464420718768049.   DOI
40 Kaur, I., Lata, P. and Singh, K. (2020), "Reflection and refraction of plane wave in piezo-thermoelastic diffusive half spaces with three phase lag memory dependent derivative and two-temperature", Wave. Rand. Complex Media, 1-34. https://doi.org/10.1080/17455030.2020.1856451.   DOI
41 Lata, P. and Kaur, H. (2020), "Time Harmonic interactions in the axisymmetric behaviour of transversely isotropic thermoelastic solid using New M-CST", Coupl. Syst. Mech., 9(6), 521. http://doi.org/10.12989/csm.2020.9.6.521.   DOI
42 Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proc. Roy. Soc. London Ser. A: Math. Phys. Sci., 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012.   DOI
43 Marin, M., Vlase, S., Ellahi, R. and Bhatti, M.M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 863. https://doi.org/10.3390/sym11070863.   DOI