1 |
Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation", Steel Compos. Struct., 32(6), 779-793. http://doi.org/10.12989/scs.2019.32.6.779.
DOI
|
2 |
Lata, P. and Singh, S. (2020), "Plane wave propagation in a nonlocal magneto-thermoelastic solid with two temperature and Hall current", Wave. Rand. Complex Media, 1-27. https://doi.org/10.1080/17455030.2020.1838667.
DOI
|
3 |
Lata, P. and Singh, S. (2020), "Time harmonic interactions in non local thermoelastic solid with two temperatures", Struct. Eng. Mech., 74, 341-350. http://doi.org/10.12989/sem.2020.74.3.341.
DOI
|
4 |
Lata, P. and Singh, S. (2021), "Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer", Steel Compos. Struct., 38(2), 141. http://doi.org/10.12989/scs.2021.38.2.141.
DOI
|
5 |
Saeed, T., Abbas, I. and Marin, M. (2020), "A GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3), 488. https://doi.org/10.3390/sym12030488.
DOI
|
6 |
Tzou, D.Y. (1995), "Unified field approach for heat conduction from macro- to micro-scales", J. Heat Transf., 117(1), 8-16. https://doi.org/10.1115/1.2822329.
DOI
|
7 |
Youssef, H. (2007), "Theory of generalized porothermoelasticity", Int. J. Rock Mech. Min. Sci., 44(2), 222-227. https://doi.org/10.1016/j.ijrmms.2006.07.001.
DOI
|
8 |
Singh, B. (2013), "Reflection of plane waves from a free surface of a porothermoelastic solid half-space", J. Porous Media, 16(10). https://doi.org/10.1615/JPorMedia.v16.i10.60.
DOI
|
9 |
Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties", Meccanica, 49(7), 1697-1708. https://doi.org/10.1007/s11012-014-9948-3.
DOI
|
10 |
Abbas, I.A. and Zenkour, A.M. (2013), "LS model on electro-magneto-thermoelastic response of an infinite functionally graded cylinder", Compos. Struct., 96 89-96. https://doi.org/10.1016/j.compstruct.2012.08.046.
DOI
|
11 |
Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. http://doi.org/10.12989/scs.2016.22.2.369.
DOI
|
12 |
Abbas, I.A. and Zenkour, A.M. (2014), "Dual-phase-lag model on thermoelastic interactions in a semi-infinite medium subjected to a ramp-type heating", J. Comput. Theor. Nanos., 11(3), 642-645. https://doi.org/10.1166/jctn.2014.3407.
DOI
|
13 |
Abd-Elaziz, E.M., Marin, M. and Othman, M.I. (2019), "On the effect of Thomson and initial stress in a thermo-porous elastic solid under GN electromagnetic theory", Symmetry, 11(3), 413. https://doi.org/10.3390/sym11030413.
DOI
|
14 |
Alzahrani, F.S. and Abbas, I.A. (2020), "Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux", Geomech. Eng., 23, 217-225. http://doi.org/10.12989/gae.2020.23.3.217.
DOI
|
15 |
Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.
DOI
|
16 |
Tzou, D.Y. (1995), "Experimental support for the lagging behavior in heat propagation", J. Thermophys. Heat Transf., 9(4), 686-693. https://doi.org/10.2514/3.725.
DOI
|
17 |
Green, A. and Naghdi, P. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136.
DOI
|
18 |
Marin, M. (2010), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045.
DOI
|
19 |
McTigue, D. (1986), "Thermoelastic response of fluid-saturated porous rock", J. Geophys. Res.: Solid Earth, 91(B9), 9533-9542. https://doi.org/10.1029/JB091iB09p09533.
DOI
|
20 |
Mohamed, R., Abbas, I.A. and Abo-Dahab, S. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Commun. Nonlin. Sci. Numer. Simul., 14(4), 1385-1395. https://doi.org/10.1016/j.cnsns.2008.04.006.
DOI
|
21 |
Singh, B. (2007), "Wave propagation in a generalized thermoelastic material with voids", Appl. Math. Comput., 189(1), 698-709. https://doi.org/10.1016/j.amc.2006.11.123.
DOI
|
22 |
Singh, B. (2011), "On propagation of plane waves in generalized porothermoelasticity", Bul. Seismol. Soc. Am., 101(2), 756-762. https://doi.org/10.1785/0120100091.
DOI
|
23 |
Singh, B. (2018), "On Rayleigh wave in a generalized porothermoelastic solid half-space", Res. J. Eng. Technol., 9(2), 179-188. https://doi.org/10.5958/2321-581X.2018.00025.9.
DOI
|
24 |
Abbas, I.A. and Youssef, H.M. (2012), "A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method", Int. J. Thermophys., 33(7), 1302-1313. https://doi.org/10.1007/s10765-012-1272-3.
DOI
|
25 |
Vinyas, M., Harursampath, D. and Kattimani, S. (2020), "Thermal response analysis of multi-layered magneto-electro-thermoelastic plates using higher order shear deformation theory", Struct. Eng. Mech., 73, 667-684. http://doi.org/10.12989/sem.2020.73.6.667.
DOI
|
26 |
Vlase, S., Marin, M., Ochsner, A. and Scutaru, M. (2019), "Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system", Continuum Mech. Thermodyn., 31(3), 715-724. https://doi.org/10.1007/s00161-018-0722-y.
DOI
|
27 |
Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
DOI
|
28 |
Kumar, R. and Abbas, I.A. (2013), "Deformation due to thermal source in micropolar thermoelastic media with thermal and conductive temperatures", J. Comput. Theor. Nanosci., 10(9), 2241-2247. https://doi.org/10.1166/jctn.2013.3193.
DOI
|
29 |
Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103.
DOI
|
30 |
Abbas, I.A. and Abo-Dahab, S. (2014), "On the numerical solution of thermal shock problem for generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", J. Comput. Theor. Nanosci., 11(3), 607-618. https://doi.org/10.1016/j.apm.2011.02.028.
DOI
|
31 |
Green, A. and Naghdi, P. (1993), "Thermoelasticity without energy dissipation", J. Elastic., 31(3), 189-208. https://doi.org/10.1007/BF00044969.
DOI
|
32 |
Abbas, I.A. and Alzahrani, F.S. (2016), "Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse", Steel Compos. Struct., 21(4), 791-803. https://doi.org/10.12989/scs.2016.21.4.791.
DOI
|
33 |
Abbas, I.A. and Kumar, R. (2014), "Deformation due to thermal source in micropolar generalized thermoelastic half-space by finite element method", J. Comput. Theor. Nanosci., 11(1), 185-190. https://doi.org/10.1166/jctn.2014.3335.
DOI
|
34 |
Abbas, I.A. and Othman, M.I. (2012), "Generalized thermoelastic interaction in a fiber-reinforced anisotropic half-space under hydrostatic initial stress", J. Vib. Control, 18(2), 175-182. https://doi.org/10.1177/1077546311402529.
DOI
|
35 |
El-Naggar, A., Kishka, Z., Abd-Alla, A., Abbas, I., Abo-Dahab, S. and Elsagheer, M. (2013), "On the initial stress, magnetic field, voids and rotation effects on plane waves in generalized thermoelasticity", J. Comput. Theor. Nanosci., 10(6), 1408-1417. https://doi.org/10.1166/jctn.2013.2862.
DOI
|
36 |
Ezzat, M. and Ezzat, S. (2016), "Fractional thermoelasticity applications for porous asphaltic materials", Petrol. Sci., 13(3), 550-560. https://doi.org/10.1007/s12182-016-0094-5.
DOI
|
37 |
Kaur, I., Lata, P. and Singh, K. (2020), "Reflection of plane harmonic wave in rotating media with fractional order heat transfer", Adv. Mater. Res., 9(4), 289. http://doi.org/10.12989/amr.2020.9.4.289.
DOI
|
38 |
Hobiny, A.D. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimension medium with voids", Geomech. Eng., 21, 85-93. http://doi.org/10.12989/gae.2020.21.1.085.
DOI
|
39 |
Itu, C., Ochsner, A., Vlase, S. and Marin, M.I. (2019), "Improved rigidity of composite circular plates through radial ribs", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 233(8), 1585-1593. https://doi.org/10.1177/1464420718768049.
DOI
|
40 |
Kaur, I., Lata, P. and Singh, K. (2020), "Reflection and refraction of plane wave in piezo-thermoelastic diffusive half spaces with three phase lag memory dependent derivative and two-temperature", Wave. Rand. Complex Media, 1-34. https://doi.org/10.1080/17455030.2020.1856451.
DOI
|
41 |
Lata, P. and Kaur, H. (2020), "Time Harmonic interactions in the axisymmetric behaviour of transversely isotropic thermoelastic solid using New M-CST", Coupl. Syst. Mech., 9(6), 521. http://doi.org/10.12989/csm.2020.9.6.521.
DOI
|
42 |
Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proc. Roy. Soc. London Ser. A: Math. Phys. Sci., 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012.
DOI
|
43 |
Marin, M., Vlase, S., Ellahi, R. and Bhatti, M.M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 863. https://doi.org/10.3390/sym11070863.
DOI
|