Browse > Article
http://dx.doi.org/10.12989/sem.2021.78.6.765

Doubly curved shell vibration using coupled finite element method  

Chorfi, S.M. (Department of Mechanical Engineering, Faculty of Engineering, University of Tlemcen)
Houmat, A. (Department of Mechanical Engineering, Faculty of Engineering, University of Tlemcen)
Publication Information
Structural Engineering and Mechanics / v.78, no.6, 2021 , pp. 765-775 More about this Journal
Abstract
In this study, we present an efficient coupled method for the doubly curved shell vibration modeling. The proposed model is based on the coupling of the hierarchical p-finite element method and the standard h-finite element method. The helements define the curved boundaries of the shell while the p-elements describe the interior domain. The connectivity between the two discretized domains is assured by the least square method. In comparison to conventional models, the coupled model captures accurately the shell curvilinear boundary with high computational efficiency and small number of elements. The proposed model is validated against both analytical solution and numerical simulation. Doubly curved shell structures with different cutouts are presented to show the robustness, applicability and computational convenience of the proposed coupled approach for complex shell geometries.
Keywords
p-version of FEM; h-version of FEM; coupling; vibration; doubly-curved shell; cutout; curvilinear planform;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, S.Y. and Chung, D.S. (2010), "Finite element delamination model for vibrating composite spherical shell panels with central cutouts", Finite Elem. Anal. Des., 46, 247-256. https://doi.org/10.1016/j.finel.2009.09.007.   DOI
2 Liew, K.M. and Lim, C.W. (1994) "vibration of perforated doubly-curved shallow shells with rounded corners", Int. J. Solid. Struct., 31(11), 1519-1536. https://doi.org/10.1016/0020-7683(94)90012-4.   DOI
3 Malinin, A.A. (1971), "Kolebaniia obolochek vrashcheniia Otverstiiami (Vibrations of shells of revolution with holes)", Mashinostroenie, 7, 22-27. (in Russian)
4 Mallek, H., Jrad, H., Wali, M. and Dammak, F. (2021), "Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory", Eng. Comput., 37, 1389-1407. https://doi.org/10.1007/s00366-019-00891-1.   DOI
5 Poore, A.L., Barut, A. and Madenci, E. (2008), "Free vibration of laminated cylindrical shells with a circular cutout", J. Sound Vib., 312, 55-73. https://doi.org/10.1016/j.jsv.2007.10.025.   DOI
6 Patel, S.N., Datta, P.K. and Sheikh, A.H. (2009), "Dynamic stability analysis of stiffened shell panels with cutouts", J. Appl. Mech., 76(4), 041004-1. https://doi.org/10.1115/1.3086595.   DOI
7 Nanda, N. and Bandyopadhyay, J.N. (2008), "Large amplitude free vibration of laminated composite shells with cutout", Aircraft Eng. Aerosp. Technol., 80(2), 165-174. https://doi.org/10.1108/00022660810859382.   DOI
8 Liew, K.M. and Lim, C.W. (1995), "A Ritz vibration analysis of doubly-curved rectangular shallow shells using a refined first-order theory", Comput. Meth. Appl. Mech. Eng., 127, 145-162. https://doi.org/10.1016/0045-7825(95)00837-1.   DOI
9 Boyd, D.E. and Brugh, R.L. (1977), "Vibrations of stiffened cylinders with cutouts", J. Sound Vib., 52(1), 65-78. https://doi.org/10.1016/0022-460X(77)90389-3.   DOI
10 Bicos, A.S. and Springer, G.S. (1989b), "Vibrational characteristics of composite panels with cutouts", AIAA J., 27, 1116-1122. https://doi.org/10.2514/3.10230.   DOI
11 Brogan, F., Forsberg, K. and Smith, S. (1969), "Dynamic behaviour of a cylinder with a cutout", Am. Inst. Aeronaut. Astronaut. J., 7, 903-911. https://doi.org/10.2514/3.5243.   DOI
12 Houmat, A. (2008), "Mapped infinite p-element for two-dimensional problems of unbounded domains", Comput. Geotech., 35(4), 608-615. https://doi.org/10.1016/j.compgeo.2007.09.007.   DOI
13 Nanda, N. and Bandyopadhyay, J.N. (2007), "Nonlinear free vibration analysis of laminated composite cylindrical shells with cutout", J. Reinf. Plast. Compos., 26(14), 1413-1427. https://doi.org/10.1177%2F0731684407079776.   DOI
14 Sahu, S.K. and Datta, P.K. (2002), "Dynamic stability of curved panels with cutouts", J. Sound Vib., 251(4), 683-696. https://doi.org/10.1006/jsvi.2001.3961.   DOI
15 Chorfi, S.M. and Houmat, A. (2010), "Nonlinear free vibration of functionally graded doubly curved shallow shell of elliptical plan-form", Compos. Struct., 92, 2573-2581. https://doi.org/10.1016/j.compstruct.2010.02.001.   DOI
16 Chorfi, S.M. and Houmat, A. (2009), "Nonlinear free vibration of moderately thick doubly curved shallow shell of elliptical planform", Int. J. Comput. Meth., 6(4), 615-632. https://doi.org/10.1142/S0219876209002030.   DOI
17 Hota, S.S. and Chakravorty, D. (2007), "Free vibration of stiffened conoidal shell roofs with cutouts", J. Vib. Control, 13(3), 221-240. https://doi.org/10.1177%2F1077546307072353.   DOI
18 Khadimallah, M.A., Hussain, M., Khedher, K.M., Naeem, M.N. and Tounsi, A. (2020), "Backward and forward rotating of FG ring support cylindrical shells", Steel Compos. Struct., 37(2), 137-150. http://doi.org/10.12989/scs.2020.37.2.137.   DOI
19 Kurpa, L., Timchenko, G., Osetrov, A. and Shmatko, T. (2017), "Nonlinear vibration analysis of laminated shallow shells with clamped cutouts by the R-functions method", Nonlin. Dyn., 93, 133-147. https://doi.org/10.1007/s11071-017-3930-2.   DOI
20 Mallek, H., Jrad, H., Wali, M., Kessentini, A., Gamaoun, F. and Dammak, F. (2019), "Dynamic analysis of functionally graded carbon nanotube-reinforced shell structures with piezoelectric layers under dynamic loads", J. Vib. Control, 26(13-14), 1157-1172. https://doi.org/10.1177/1077546319892753.   DOI
21 Srivastava, A.K.L., Datta, P.K. and Sheikh, A.H. (2003), "Dynamic instability of stiffened plates with cutout subjected to in-plane uniform edge loadings", Int. J. Struct. Stab. Dyn., 3(3), 391-403. https://doi.org/10.1142/S0219455403000963.   DOI
22 Wang, D.Y. and Foster, Jr. W.A. (1993), "On axisymmetric vibration of shallow spherical shells with fixed circular cutout", Appl. Math. Comput., 57, 205-220. https://doi.org/10.1016/0096-3003(93)90147-7.   DOI
23 Xu, C. and Chia, C.Y. (1995), "Non-linear vibration and buckling analysis of laminated shallow spherical shells with holes", Compos. Sci. Technol., 54, 67-74. https://doi.org/10.1016/0266-3538(95)00038-0.   DOI
24 Sai Ram, K.S. and Sreedhar Babu, T. (2002), "Free vibration of composite spherical shell cap with and without a cutout", Comput. Struct., 80, 1749-1756. https://doi.org/10.1016/S0045- 7949(02)00210-9.   DOI
25 Sivasubramonian, B., Kulkarni A.M., Venkateswara Rao, G. and Krishnan, A. (1997), "Free vibration of curved panels with cutouts", J. Sound Vib., 200(2), 227-234. https://doi.org/10.1006/jsvi.1996.0637.   DOI
26 Sokolnikoff, I.S. (1956), Mathematical Theory of Elasticity, McGraw-Hill, New York.
27 Shopa, T.V. (2010), "Investigation of frequencies of natural vibrations of a transversally isotropic cylindrical panel with a circular hole", J. Math. Sci., 170(6), 721-733. https://doi.org/10.1007/s10958-010-0116-6.   DOI
28 Reddy, J.N. (1984), "Exact solution of moderately thick laminated shells", Tran. ASME J. Appl. Mech., 110(5), 794. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:5(794).   DOI
29 Sahoo, S. (2014), "Laminated composite stiffened shallow spherical panels with cutouts under free vibration-A finite element approach", Eng. Sci. Technol., 17, 247-259. https://doi.org/10.1016/j.jestch.2014.07.002.   DOI
30 Seregin, S.V. (2015), "Free vibrations of a thin circular cylindrical shell weakened by a hole", Russian Aeronautics (Iz.VUZ), 58(3), 258-262. https://doi.org/10.3103/S1068799815030022.   DOI
31 Sivasubramonian, B., Venkateswara Rao, G. and Krishnan, A. (1999), "Free vibration of longitudinally stiffened curved panels with cutout", J. Sound Vib., 226(1), 41-55. https://doi.org/10.1006/jsvi.1999.2281.   DOI
32 Wang, D.Y. and Foster, Jr. W.A. (1992), "Analysis of axisymmetric free vibration of isotropic shallow spherical shells with a circular hole", J. Sound Vib., 157(2), 331-343. https://doi.org/10.1016/0022-460X(92)90685-Q.   DOI
33 Houmat, A. and Rashid, M.M. (2012), "Coupling of h and p finite elements: Application to free vibration analysis of plates with curvilinear plan-forms", Appl. Math. Model., 36(2), 505-520. https://doi.org/10.1016/j.apm.2011.07.048.   DOI
34 Bicos, A.S. and Springer, G.S. (1989a), "Analysis of free damped vibration of laminated composite plates and shells", Int. J. Solid. Struct., 25, 129-149. https://doi.org/10.1016/0020-7683(89)90003-6.   DOI
35 Mellouli, H., Jrad, H., Wali, M. and Dammak, F. (2020), "Free vibration analysis of FG-CNTRC shell structures using the meshfree radial point interpolation method", Comput. Math. Appl., 79(11), 3160-3178. https://doi.org/10.1016/j.camwa.2020.01.015.   DOI
36 Al-Furjan, M.S.H., Habibi, M., Jung, D.W., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020a), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01130-8.   DOI
37 Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020b), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01088-7.   DOI
38 Allam, O., Draiche, K., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Mahmoud, S.R., Adda Bedia, E.A. and Tounsi, A. (2020), "A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells", Comput. Concrete, 26(2), 185-201. http://doi.org/10.12989/cac.2020.26.2.185.   DOI
39 Ravi Kumar, L., Datta P.K. and Prabhakara, D.L. (2004), "Tension buckling and parametric instability characteristics of doubly curved panels with circular cutout subjected to nonuniform tensile edge loading", Thin Wall. Struct., 42, 947-962. https://doi.org/10.1016/j.tws.2004.03.009.   DOI
40 Sun, F., Wang, P., Li, W., Fan, H. and Fang, D. (2017), "Effects of circular cutouts on mechanical behaviors of carbon fiber reinforced lattice-core sandwich cylinder", Compos. Part A: Appl. Sci. Manuf., 100, 313-323. http://doi.org/10.1016/j.compositesa.2017.05.029.   DOI
41 Toda, S. and Komatsu, K. (1997), "Vibrations of circular cylindrical shells with cutouts", J. Sound Vib., 52(4), 497-510. https://doi.org/10.1016/0022-460X(77)90366-2.   DOI