Browse > Article
http://dx.doi.org/10.12989/sem.2021.78.6.691

Simulation of different carbon structures on significant mechanical and physical properties based on MDs method  

Farazin, Ashkan (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Ghorbanpour-Arani, Amirabbas (School of Mechanical Engineering, College of Engineering, University of Tehran)
Publication Information
Structural Engineering and Mechanics / v.78, no.6, 2021 , pp. 691-702 More about this Journal
Abstract
In this research, the nanocomposite boxes are simulated using polyurethane (PU) as a thermoplastic polymer with various reinforcements including carbon nanoparticles (CNPs), graphene platelets (GPLs), single-walled carbon nanotubes (SWCNTs), and double-walled carbon nanotubes (DWCNTs), which are as biocompatible and biodegradable. To predict the mechanical and physical properties of each nanocomposite boxes, the molecular dynamics (MDs) method with Materials studio software has been applied. Ultimately, all properties including mechanical and physical properties (Young's modulus, shear modulus, Poisson's ratio, bulk modulus, and density) for all four simulated nanocomposite boxes are achieved and compared to each other. To increase the accuracy of this simulation, it is attempted to keep the number of carbon atoms in each simulation the same. It is noteworthy that by changing the state of CNPs to SWCNTs-DWCNTs, density, Young's modulus, shear modulus, bulk modulus and Poisson's ratio of nanocomposite from CNPs to DWCNTs approximately becomes 5.7, 10.25, 28.63, 96 and 1.39 times, respectively. Then, the stiffness matrix are obtained by Materials studio software. Moreover, the obtained results from this research are validated with the results of the literature. Also, the mechanical and physical properties of nanocomposite are recommended before fabrication. The manufacturing of this nanocomposite is used for biomedical cases such as artificial vessels and piping.
Keywords
carbon nanoparticles; graphene platelets; carbon nanotubes; mechanical and physical properties; molecular dynamics method;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral doublewalled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.   DOI
2 Dimiev, A.M., Shukhina, K., Behabtu, N., Pasquali, M. and Tour, J.M. (2019), "Stage transitions in graphite intercalation compounds: role of the graphite structure", J. Phys. Chem. C, 123(31), 19246-19253. https://doi.org/10.1021/acs.jpcc.9b06726.   DOI
3 Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A. and Joo, S.W. (2014), "Carbon nanotubes: properties, synthesis, purification, and medical applications", Nanos. Res. Let., 9(1), 393. https://doi.org/10.1186/1556-276X-9-393.   DOI
4 Eiken, J. and Bottger, B. (2018), "A multi-phase-field approach for solidification with non-negligible volumetric expansion-application to graphite growth in nodular cast iron", Tran. Indian Inst. Metal., 71(11), 2725-2729. https://doi.org/10.1007/s12666-018-1427-4.   DOI
5 Evers, K., Porwal, H., Todd, R.I. and Grobert, N. (2019), "MWCNT-coated alumina micro-platelets for nacre-like biomimetic composites", Carbon, 145, 586-595. https://doi.org/10.1016/j.carbon.2019.01.060.   DOI
6 Frankland, S.J.V., Harik, V.M., Odegard, G.M., Brenner, D.W. and Gates, T.S. (2003), "The stress-strain behavior of polymer- nanotube composites from molecular dynamics simulation", Compos. Sci. Technol., 63(11), 1655-1661. https://doi.org/10.1016/S0266-3538(03)00059-9.   DOI
7 Frogley, M.D., Ravich, D. and Wagner, H.D. (2003), "Mechanical properties of carbon nanoparticle-reinforced elastomers", Compos. Sci. Technol., 63(11), 1647-1654. https://doi.org/10.1016/S0266-3538(03)00066-6.   DOI
8 Farazin, A., Aghadavoudi, F., Motififard, M., Saber-Samandari, S. and Khandan, A. (2020), "Nanostructure, molecular dynamics simulation and mechanical performance of PCL membranes reinforced with antibacterial nanoparticles", J. Appl. Comput. Mech., 7(2), 101-111. https://doi.org/10.22055/jacm.2020.32902.2097.   DOI
9 Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., 59(3), 431-454. https://doi.org/10.12989/sem.2016.59.3.431.   DOI
10 Mohammadimehr, M., Navi, B.R. and Ghorbanpour Arani, A. (2017b), "Dynamic stability of modified strain gradient theory sinusoidal viscoelastic piezoelectric polymeric functionally graded single-walled carbon nanotubes reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermo-electro-magnetomechanical loadings", Mech. Adv. Mater. Struct., 24(16), 1325-1342. https://doi.org/10.1080/15376494.2016.1227507.   DOI
11 Mohammadimehr, M., Mohammadimehr, M.A. and Dashti, P. (2016), "Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic microplate based on surface stress and modified couple stress theories using differential quadrature method", Appl. Math. Mech., 37(4), 529-554. https://doi.org/10.1007/s10483-016-2045-9.   DOI
12 Mortazavi, B., Cuniberti, G. and Rabczuk, T. (2015), "Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study", Comput. Mater. Sci., 99, 285-289. https://doi.org/10.1016/j.commatsci.2014.12.036.   DOI
13 Fu, C., Liu, J., Xia, H. and Shen, L. (2015), "Effect of structure on the properties of polyurethanes based on aromatic cardanol-based polyols prepared by thiol-ene coupling", Prog. Organic Coat., 83, 19-25. https://doi.org/10.1016/j.porgcoat.2015.01.020.   DOI
14 Gadalla, M. and El Kadi, H. (2009), "Evaluation of thermal stability of quasi-isotropic composite/polymeric cylindrical structures under extreme climatic conditions", Struct. Eng. Mech., 32(3), 429-445. https://doi.org/10.12989/sem.2009.32.3.429.   DOI
15 Ghorbanpour Arani, A., Maghamikia, S., Mohammadimehr, M. and Arefmanesh, A. (2011), "Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods", J. Mech. Sci. Technol., 25(3), 809-820. https://doi.org/10.1007/s12206-011-0127-3.   DOI
16 Ghorbanpour Arani, A., Rousta Navi, B. and Mohammadimehr, M (2016), "Surface stress and agglomeration effects on nonlocal biaxial buckling polymeric nanocomposite plate reinforced by CNT using various approaches", Adv. Compos. Mater., 25(5), 423-441. https://doi.org/10.1080/09243046.2015.1052189.   DOI
17 Gojny, F.H., Wichmann, M.H., Fiedler, B. and Schulte, K. (2005), "Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-a comparative study", Compos. Sci. Technol., 65(15-16), 2300-2313. https://doi.org/10.1016/j.compositesa.2005.02.007.   DOI
18 Gonzalez-Garcia, Y., Gonzalez, S. and Souto, R.M. (2007), "Electrochemical and structural properties of a polyurethane coating on steel substrates for corrosion protection", Corr. Sci., 49(9), 3514-3526. https://doi.org/10.1016/j.corsci.2007.03.018.   DOI
19 Farazin, A., Aghdam, H.A., Motififard, M., Aghadavoudi, F., Kordjamshidi, A., Saber-Samandari, S. and Khandan, A. (2019), "A polycaprolactone bio-nanocomposite bone substitute fabricated for femoral fracture approaches: Molecular dynamic and micro-mechanical Investigation", J. Nanoanal., 6(3), 172-184. https://doi.org/10.22034/jna.2019.584848.1134.
20 Ghorbanpour Arani, A., Rahnama Mobarakeh, M., Shams, S. and Mohammadimehr, M. (2012), "The effect of CNT volume fraction on the magneto-thermo-electro-mechanical behavior of smart nanocomposite cylinder", J. Mech. Sci. Technol., 26(8), 2565-2572. https://doi.org/10.1007/s12206-012-0639-5.   DOI
21 Mukherjee, S., Alicandri, R. and Singh, C.V. (2020), "Strength of graphene with curvilinear grain boundaries", Carbon, 158, 808-817. https://doi.org/10.1016/j.carbon.2019.11.058.   DOI
22 Naz, A., Kausar, A., Siddiq, M. and Choudhary, M.A. (2016), "Comparative review on structure, properties, fabrication techniques, and relevance of polymer nanocomposites reinforced with carbon nanotube and graphite fillers", Polym.-Plast. Technol. Eng., 55(2), 171-198. https://doi.org/10.1080/03602559.2015.1055504.   DOI
23 Robertson, J. (2002), "Diamond-like amorphous carbon", Mater. Sci. Eng.: R: Report., 37(4-6), 129-281. https://doi.org/10.1016/S0927-796X(02)00005-0.   DOI
24 Papageorgiou, D.G., Kinloch, I.A. and Young, R.J. (2017), "Mechanical properties of graphene and graphene-based nanocomposites", Prog. Mater. Sci., 90, 75-127. https://doi.org/10.1016/j.pmatsci.2017.07.004.   DOI
25 Popov, V.N. (2004), "Carbon nanotubes: properties and application", Mater. Sci. Eng.: R: Report., 43(3), 61-102. https://doi.org/10.1016/j.mser.2003.10.001.   DOI
26 Ramirez, S., Chan, K., Hernandez, R., Recinos, E., Hernandez, E., Salgado, R. and Balandin, A.A. (2017), "Thermal and magnetic properties of nanostructured densified ferrimagnetic composites with graphene-graphite fillers", Mater. Des., 118, 75-80. https://doi.org/10.1016/j.matdes.2017.01.018.   DOI
27 Sakorikar, T., Vayalamkuzhi, P. and Jaiswal, M. (2020), "Geometry dependent performance limits of stretchable reduced graphene oxide interconnects: The role of wrinkles", Carbon, 158, 864-872. https://doi.org/10.1016/j.carbon.2019.11.070.   DOI
28 Shah, K.A. and Tali, B.A. (2016), "Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates", Mater. Sci. Semicond. Proc., 41, 67-82. https://doi.org/10.1016/j.mssp.2015.08.013.   DOI
29 Sari, A., Bicer, A. and Hekimoglu, G. (2019), "Effects of carbon nanotubes additive on thermal conductivity and thermal energy storage properties of a novel composite phase change material", J. Compos. Mater., 53(21), 2967-2980. https://doi.org/10.1177/0021998318808357.   DOI
30 Aghadavoudi, F., Golestanian, H. and Tadi Beni, Y. (2018), "Investigating the effects of CNT aspect ratio and agglomeration on elastic constants of crosslinked polymer nanocomposite using multiscale modeling", Polym. Compos., 39(12), 4513-4523. https://doi.org/10.1002/pc.24557.   DOI
31 Hwang, S.F., Li, J.C. and Mao, C.P. (2012), "Perforation threshold energy of carbon fiber composite laminates", Struct. Eng. Mech., 43(2), 199-209. https://doi.org/10.12989/sem.2012.43.2.199.   DOI
32 Song, X., Guo, H., Tao, J., Zhao, S., Han, X. and Liu, H. (2018), "Encapsulation of single-walled carbon nanotubes with asymmetric pyrenyl-gemini surfactants", Chem. Eng. Sci., 187, 406-414. https://doi.org/10.1016/j.ces.2018.05.009.   DOI
33 Nikkar, A., Rouhi, S. and Ansari, R. (2017), "Finite element modeling of the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes", Struct. Eng. Mech., 64(3), 329-337. https://doi.org/10.12989/sem.2017.64.3.239.   DOI
34 Hadipeykani, M., Aghadavoudi, F. and Toghraie, D. (2020), "A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: A statistical study", Physica A: Stat. Mech. Its Appl., 123995. https://doi.org/10.1016/j.physa.2019.123995.   DOI
35 Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.   DOI
36 Hu, L., Hecht, D.S. and Gruner, G. (2010), "Carbon nanotube thin films: fabrication, properties, and applications", Chem. Rev., 110(10), 5790-5844. https://doi.org/10.1021/cr9002962.   DOI
37 Kawde, A.N., Baig, N. and Sajid, M. (2016), "Graphite pencil electrodes as electrochemical sensors for environmental analysis: a review of features, developments, and applications", RSC Adv., 6(94), 91325-91340. https://doi.org/10.1039/C8NJ03721C.   DOI
38 Khandan, A., Saber-Samandari, S., Telloo, M., Kazeroni, Z.S., Esmaeili, S., Sheikhbahaei, E. and Kamyab, B. (2020), "A mitral heart valve prototype using sustainable polyurethane polymer: Fabricated by 3D bioprinter, tested by molecular dynamics simulation", AUT J. Mech. Eng., 5(1), 109-120. https://doi:org/10.22060/AJME.2020.17450.5862.   DOI
39 Li, Y., Lu, Y., Adelhelm, P., Titirici, M.M. and Hu, Y.S. (2019), "Intercalation chemistry of graphite: alkali metal ions and beyond", Chem. Soc. Rev., 48(17), 4655-4687. https://doi.org/10.1039/C9TA13913C.   DOI
40 Sugimoto, Y., Shimamoto, D., Imai, Y. and Hotta, Y. (2020). Simultaneous evaluation of tensile strength and interfacial shear strength of short length carbon fibers using fragmentation test. Carbon, 161, 83-88. https://doi.org/10.1016/j.carbon.2019.12.089.   DOI
41 Liu, W., Wei, M., Ji, L., Zhang, Y., Song, Y., Liao, J. and Zhang, L. (2020), "Hollow carbon sphere based WS2 anode for high performance lithium and sodium ion batteries", Chem. Phys. Lett., 741, 137061. https://doi.org/10.1016/j.cplett.2019.137061.   DOI
42 AkhavanAlavi, S.M., Mohammadimehr, M. and Edjtahed, S.H. (2019), "Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method", Eur. J. Mech. A/Solid., 74, 449-461. https://doi.org/10.1016/j.euromechsol.2018.12.008.   DOI
43 Xu, J., Cao, Z., Zhang, Y., Yuan, Z., Lou, Z., Xu, X. and Wang, X. (2018), "A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism", Chemosph., 195, 351-364. https://doi.org/10.1016/j.chemosphere.2017.12.061.   DOI
44 Virani, N.A., Davis, C., McKernan, P., Hauser, P., Hurst, R.E., Slaton, J. and Harrison, R.G. (2017), "Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer", Nanotechnol., 29(3), 035101. https://doi.org/10.1088/1361-6528/aa9c0c.   DOI
45 Wang, J., Tan, H., Xiao, D., Navik, R., Goto, M. and Zhao, Y. (2020), "Preparation of waterborne graphene paste with high electrical conductivity", Chem. Phys. Lett., 741, 137098. https://doi.org/10.1016/j.cplett.2020.137098.   DOI
46 Wang, W., Gan, N., Sun, Q., Wu, D., Gan, R., Zhang, M. and Li, H. (2019), "Study on the interaction of ertugliflozin with human serum albumin in vitro by multispectroscopic methods, molecular docking, and molecular dynamics simulation", Spectrochimica Acta Part A: Molecul. Biomol. Spectroscopy, 219, 83-90. https://doi.org/10.1016/j.saa.2019.04.047.   DOI
47 Yu, M.F., Files, B.S., Arepalli, S. and Ruoff, R.S. (2000), "Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties", Phys. Rev. Lett., 84(24), 5552. https://doi.org/10.1103/PhysRevLett.84.5552.   DOI
48 Zaboli, M. and Raissi, H. (2018), "A combined molecular dynamics simulation and quantum mechanics study on mercaptopurine interaction with the cucurbit [6,7] urils: Analysis of electronic structure", Spectrochimica Acta Part A: Molecul. Biomol. Spectroscopy, 188, 647-658. https://doi.org/10.1016/j.saa.2017.07.058.   DOI
49 Chehreh Chelgani, S., Rudolph, M., Kratzsch, R., Sandmann, D. and Gutzmer, J. (2016), "A review of graphite beneficiation techniques", Min. Proc. Extract. Metal. Rev., 37(1), 58-68. https://doi.org/10.1080/08827508.2015.1115992.   DOI
50 Beitollahi, H., Dourandish, Z., Tajik, S., Ganjali, M.R., Norouzi, P. and Faridbod, F. (2018), "Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine", J. Rare Earths, 36(7), 750-757. https://doi.org/10.1016/j.jre.2018.01.010.   DOI
51 Cherng, J.Y., Hou, T.Y., Shih, M.F., Talsma, H. and Hennink, W.E. (2013), "Polyurethane-based drug delivery systems", Int. J. Pharmaceut., 450(1-2), 145-162. https://doi.org/10.1016/j.ijpharm.2013.04.063.   DOI
52 Kim, K., Lim, J., Kim, J. and Lim, Y. M. (2008), "Simulation of material failure behavior under different loading rates using molecular dynamics", Struct. Eng. Mech., 30(2), 177-190. https://doi:org/10.12989/sem.2008.30.2.177.   DOI
53 Ayatollahi, M.R., Naeemi, A.R. and Alishahi, E. (2015), "Effects of mixed contents of carbon nanoreinforcements on the impact resistance of epoxy-based nanocomposites", Struct. Eng. Mech., 56(2), 157-167. https://doi.org/10.12989/sem.2015.56.2.157.   DOI
54 Bai, G., Wang, C., Yang, Y. and Shao, M.H. (2018), "The Application of Graphite in the Preparation of Cathode Material Li3V2 (PO4) 3/C", Chem. Select, 3(23), 6328-6333. https://doi.org/10.1002/slct.201800933.   DOI
55 Bandaru, R. (2007), "Electrical properties and applications of carbon nanotube structures", J. Nanosci. Nanotechnol., 7(4-5), 1239-1267. https://doi.org/10.1166/jnn.2007.307.   DOI
56 Anvari, M., Mohammadimehr, M. and Amiri, A. (2020) "Vibration behavior of a micro cylindrical sandwich panel reinforced by graphene platelet", J. Vib. Control, 26(13-14), 1311-1343. https://doi.org/10.1177/1077546319892730.   DOI
57 Mahboob, M. and Islam, M. Z. (2013), "Molecular dynamics simulations of defective CNT-polyethylene composite systems", Comput. Mater. Sci., 79, 223-229. https://doi.org/10.1016/j.commatsci.2013.05.042.   DOI
58 Barzoki, A.A.M., Loghman, A. and Ghorbanpour Arani, A. (2015), "Temperature-dependent nonlocal nonlinear buckling analysis of functionally graded SWCNT-reinforced microplates embedded in an orthotropic elastomeric medium", Struct. Eng. Mech., 53(3), 497-517. https://doi.org/10.12989/sem.2015.53.3.497.   DOI
59 Bansal, P.P. and Sidhu, R. (2017), "Mechanical and durability properties of fluoropolymer modified cement mortar", Struct. Eng. Mech., 63(3), 317-327. https://doi.org/10.12989/sem.2017.63.3.317.   DOI
60 Mohammadimehr, M., Shahedi, S. and Rousta Navi, B. (2017a), "Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 231(20), 3866-3885. https://doi.org/10.1177/0954406216653622.   DOI
61 Montazeri, A., Sadeghi, M., Naghdabadi, R. and Rafii-Tabar, H. (2011), "Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites", Phys. Lett. A, 375(14), 1588-1597. https://doi.org/10.1016/j.physleta.2011.02.065.   DOI
62 Marcadon, V., Brown, D., Herve, E., Mele, P., Alberola, N.D. and Zaoui, A. (2013), "Confrontation between molecular dynamics and micromechanical approaches to investigate particle size effects on the mechanical behaviour of polymer nanocomposites", Comput. Mater. Sci., 79, 495-505. https://doi.org/10.1016/j.commatsci.2013.07.002.   DOI
63 Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.   DOI
64 Mohammadimehr, M., Rosta Navi, B. and Ghorbanpour Arani, A. (2015), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077.   DOI
65 Moradi-Dastjerdi, R. and Aghadavoudi, F. (2018), "Static analysis of functionally graded nanocomposite sandwich plates reinforced by defected CNT", Compos. Struct., 200, 839-848. https://doi.org/10.1016/j.compstruct.2018.05.122.   DOI